
PERL(1) PERL(1)

The default top-of-form format for FILEHANDLE is now FILEHANDLE TOP rather than top.

The eval fg and sort fg constructs were added in version 4.018.

The v and V (little-endian) template options for pack and unpack were added in 4.019.

BUGS

Perl is at the mercy of your machine's de�nitions of various operations such as type casting, atof()

and sprintf().

If your stdio requires an seek or eof between reads and writes on a particular stream, so does perl .

(This doesn't apply to sysread() and syswrite().)

While none of the built-in data types have any arbitrary size limits (apart from memory size),

there are still a few arbitrary limits: a given identi�er may not be longer than 255 characters, and

no component of your PATH may be longer than 255 if you use �S. A regular expression may

not compile to more than 32767 bytes internally.

Perl actually stands for Pathologically Eclectic Rubbish Lister, but don't tell anyone I said that.

Release 4.0 Patchlevel 36 78

PERL(1) PERL(1)

* The pattern matching metacharacters (,), and j do not have backslashes in front.

* The range operator is . . rather than comma.

Sharp shell programmers should take note of the following:

* The backtick operator does variable interpretation without regard to the presence of single

quotes in the command.

* The backtick operator does no translation of the return value, unlike csh.

* Shells (especially csh) do several levels of substitution on each command line. Perl does sub-

stitution only in certain constructs such as double quotes, backticks, angle brackets and

search patterns.

* Shells interpret scripts a little bit at a time. Perl compiles the whole program before execut-

ing it.

* The arguments are available via @ARGV, not $1, $2, etc.

* The environment is not automatically made available as variables.

ERRATA AND ADDENDA

The Perl book, Programming Perl , has the following omissions and goofs.

On page 5, the examples which read

eval "/usr/bin/perl

should read

eval "exec /usr/bin/perl

On page 195, the equivalent to the System V sum program only works for very small �les. To do

larger �les, use

undef $/;

$checksum = unpack("%32C*",<>) % 32767;

The descriptions of alarm and sleep refer to signal SIGALARM. These should refer to SIGALRM.

The �0 switch to set the initial value of $/ was added to Perl after the book went to press.

The �l switch now does automatic line ending processing.

The qx// construct is now a synonym for backticks.

$0 may now be assigned to set the argument displayed by ps (1).

The new @###.## format was omitted accidentally from the description on formats.

It wasn't known at press time that s///ee caused multiple evaluations of the replacement expres-

sion. This is to be construed as a feature.

(LIST) x $count now does array replication.

There is now no limit on the number of parentheses in a regular expression.

In double-quote context, more escapes are supported: ne, na, nx1b, nc[, nl, nL, nu, nU, nE. The

latter �ve control up/lower case translation.

The $/ variable may now be set to a multi-character delimiter.

There is now a g modi�er on ordinary pattern matching that causes it to iterate through a string

�nding multiple matches.

All of the $^X variables are new except for $^T.

Release 4.0 Patchlevel 36 77

PERL(1) PERL(1)

* $<digit> does not refer to �elds| it refers to substrings matched by the last match pattern.

* The print statement does not add �eld and record separators unless you set $, and $n.

* You must open your �les before you print to them.

* The range operator is `̀ . .'', not comma. (The comma operator works as in C.)

* The match operator is `̀ =~'', not `̀ ~''. (`̀ ~'' is the one's complement operator, as in C.)

* The exponentiation operator is `̀ **'', not `̀ ^''. (`̀ ^'' is the XOR operator, as in C.)

* The concatenation operator is `̀ .'', not the null string. (Using the null string would render

`̀ /pat/ /pat/'' unparsable, since the third slash would be interpreted as a division

operator| the tokener is in fact slightly context sensitive for operators like /, ?, and <. And

in fact, . itself can be the beginning of a number.)

* Next , exit and continue work di�erently.

* The following variables work di�erently

Awk Perl

ARGC $#ARGV

ARGV[0] $0

FILENAME $ARGV

FNR $. � something

FS (whatever you like)

NF $#Fld, or some such

NR $.

OFMT $#

OFS $,

ORS $n

RLENGTH length($&)

RS $/

RSTART length($�)

SUBSEP $;

* When in doubt, run the awk construct through a2p and see what it gives you.

Cerebral C programmers should take note of the following:

* Curly brackets are required on ifs and whiles.

* You should use `̀ elsif'' rather than `̀ else if''

* Break and continue become last and next , respectively.

* There's no switch statement.

* Variables begin with $ or @ in perl .

* Printf does not implement *.

* Comments begin with #, not /*.

* You can't take the address of anything.

* ARGV must be capitalized.

* The `̀ system'' calls link, unlink, rename, etc. return nonzero for success, not 0.

* Signal handlers deal with signal names, not numbers.

Seasoned sed programmers should take note of the following:

* Backreferences in substitutions use $ rather than n.

Release 4.0 Patchlevel 36 76

PERL(1) PERL(1)

ENVIRONMENT

HOME Used if chdir has no argument.

LOGDIR Used if chdir has no argument and HOME is not set.

PATH Used in executing subprocesses, and in �nding the script if �S is used.

PERLLIB A colon-separated list of directories in which to look for Perl library �les before look-

ing in the standard library and the current directory.

PERLDB The command used to get the debugger code. If unset, uses

require 'perldb.pl'

Apart from these, perl uses no other environment variables, except to make them available to the

script being executed, and to child processes. However, scripts running setuid would do well to

execute the following lines before doing anything else, just to keep people honest:

$ENVf�PATH�g = �/bin:/usr/bin�; # or whatever you need

$ENVf�SHELL�g = �/bin/sh� if $ENVf�SHELL�g ne ��;

$ENVf�IFS�g = �� if $ENVf�IFS�g ne ��;

AUTHOR

Larry Wall <lwall@netlabs.com>

MS-DOS port by Diomidis Spinellis <dds@cc.ic.ac.uk>

FILES

/tmp/perl�eXXXXXX temporary �le for �e commands.

SEE ALSO

a2p awk to perl translator

s2p sed to perl translator

DIAGNOSTICS

Compilation errors will tell you the line number of the error, with an indication of the next token

or token type that was to be examined. (In the case of a script passed to perl via �e switches,

each �e is counted as one line.)

Setuid scripts have additional constraints that can produce error messages such as `̀ Insecure

dependency''. See the section on setuid scripts.

TRAPS

Accustomed awk users should take special note of the following:

* Semicolons are required after all simple statements in perl (except at the end of a block).

Newline is not a statement delimiter.

* Curly brackets are required on ifs and whiles.

* Variables begin with $ or @ in perl .

* Arrays index from 0 unless you set $[. Likewise string positions in substr() and index().

* You have to decide whether your array has numeric or string indices.

* Associative array values do not spring into existence upon mere reference.

* You have to decide whether you want to use string or numeric comparisons.

* Reading an input line does not split it for you. You get to split it yourself to an array. And

the split operator has di�erent arguments.

* The current input line is normally in $, not $0. It generally does not have the newline

stripped. ($0 is the name of the program executed.)

Release 4.0 Patchlevel 36 75

PERL(1) PERL(1)

impossible for the tainted value to inuence the variable). For example:

$foo = shift; # $foo is tainted

$bar = $foo,�bar�; # $bar is also tainted

$xxx = <>; # Tainted

$path = $ENVf�PATH�g; # Tainted, but see below

$abc = �abc�; # Not tainted

system "echo $foo"; # Insecure

system "/bin/echo", $foo; # Secure (doesn't use sh)

system "echo $bar"; # Insecure

system "echo $abc"; # Insecure until PATH set

$ENVf�PATH�g = �/bin:/usr/bin�;

$ENVf�IFS�g = �� if $ENVf�IFS�g ne ��;

$path = $ENVf�PATH�g; # Not tainted

system "echo $abc"; # Is secure now!

open(FOO,"$foo"); # OK

open(FOO,">$foo"); # Not OK

open(FOO,"echo $fooj"); # Not OK, but...

open(FOO,"-j") jj exec �echo�, $foo; # OK

$zzz = `echo $foo`; # Insecure, zzz tainted

unlink $abc,$foo; # Insecure

umask $foo; # Insecure

exec "echo $foo"; # Insecure

exec "echo", $foo; # Secure (doesn't use sh)

exec "sh", �-c�, $foo; # Considered secure, alas

The taintedness is associated with each scalar value, so some elements of an array can be tainted,

and others not.

If you try to do something insecure, you will get a fatal error saying something like `̀ Insecure

dependency'' or `̀ Insecure PATH''. Note that you can still write an insecure system call or exec,

but only by explicitly doing something like the last example above. You can also bypass the taint-

ing mechanism by referencing subpatterns| perl presumes that if you reference a substring using

$1, $2, etc, you knew what you were doing when you wrote the pattern:

$ARGV[0] =~ /^�P(nw+)$/;

$printer = $1; # Not tainted

This is fairly secure since nw+ doesn't match shell metacharacters. Use of .+ would have been

insecure, but perl doesn't check for that, so you must be careful with your patterns. This is the

ONLY mechanism for untainting user supplied �lenames if you want to do �le operations on them

(unless you make $> equal to $<).

It's also possible to get into trouble with other operations that don't care whether they use

tainted values. Make judicious use of the �le tests in dealing with any user-supplied �lenames.

When possible, do opens and such after setting $> = $<. Perl doesn't prevent you from opening

tainted �lenames for reading, so be careful what you print out. The tainting mechanism is

intended to prevent stupid mistakes, not to remove the need for thought.

Release 4.0 Patchlevel 36 74

PERL(1) PERL(1)

d line Delete breakpoint. If line is omitted, deletes the breakpoint on the line that is

about to be executed.

D Delete all breakpoints.

a line command

Set an action for line. A multi-line command may be entered by backslashing the

newlines.

A Delete all line actions.

< command Set an action to happen before every debugger prompt. A multi-line command may

be entered by backslashing the newlines.

> command Set an action to happen after the prompt when you've just given a command to

return to executing the script. A multi-line command may be entered by backslash-

ing the newlines.

V package List all variables in package. Default is main package.

! number Redo a debugging command. If number is omitted, redoes the previous command.

! -number Redo the command that was that many commands ago.

H -number Display last n commands. Only commands longer than one character are listed. If

number is omitted, lists them all.

q or ^D Quit.

command Execute command as a perl statement. A missing semicolon will be supplied.

p expr Same as `̀ print DB'OUT expr''. The DB'OUT �lehandle is opened to /dev/tty,

regardless of where STDOUT may be redirected to.

If you want to modify the debugger, copy perldb.pl from the perl library to your current directory

and modify it as necessary. (You'll also have to put -I. on your command line.) You can do some

customization by setting up a .perldb �le which contains initialization code. For instance, you

could make aliases like these:

$DB'aliasf'len'g = 's/^len(.*)/p length($1)/';

$DB'aliasf'stop'g = 's/^stop (atjin)/b/';

$DB'aliasf'.'g =

's/^n./p "n$DBn'sub(n$DBn'line):nt",n$DBn'line[n$DBn'line]/';

Setuid Scripts

Perl is designed to make it easy to write secure setuid and setgid scripts. Unlike shells, which are

based on multiple substitution passes on each line of the script, perl uses a more conventional

evaluation scheme with fewer hidden `̀ gotchas''. Additionally, since the language has more built-

in functionality, it has to rely less upon external (and possibly untrustworthy) programs to accom-

plish its purposes.

In an unpatched 4.2 or 4.3bsd kernel, setuid scripts are intrinsically insecure, but this kernel fea-

ture can be disabled. If it is, perl can emulate the setuid and setgid mechanism when it notices

the otherwise useless setuid/gid bits on perl scripts. If the kernel feature isn't disabled, perl will

complain loudly that your setuid script is insecure. You'll need to either disable the kernel setuid

script feature, or put a C wrapper around the script.

When perl is executing a setuid script, it takes special precautions to prevent you from falling into

any obvious traps. (In some ways, a perl script is more secure than the corresponding C pro-

gram.) Any command line argument, environment variable, or input is marked as `̀ tainted'', and

may not be used, directly or indirectly, in any command that invokes a subshell, or in any com-

mand that modi�es �les, directories or processes. Any variable that is set within an expression

that has previously referenced a tainted value also becomes tainted (even if it is logically

Release 4.0 Patchlevel 36 73

PERL(1) PERL(1)

3. Don't be afraid to use loop labels|they're there to enhance readability as well as to allow

multi-level loop breaks. See last example.

4. For portability, when using features that may not be implemented on every machine, test the

construct in an eval to see if it fails. If you know what version or patchlevel a particular fea-

ture was implemented, you can test $] to see if it will be there.

5. Choose mnemonic identi�ers.

6. Be consistent.

Debugging

If you invoke perl with a �d switch, your script will be run under a debugging monitor. It will

halt before the �rst executable statement and ask you for a command, such as:

h Prints out a help message.

T Stack trace.

s Single step. Executes until it reaches the beginning of another statement.

n Next. Executes over subroutine calls, until it reaches the beginning of the next

statement.

f Finish. Executes statements until it has �nished the current subroutine.

c Continue. Executes until the next breakpoint is reached.

c line Continue to the speci�ed line. Inserts a one-time-only breakpoint at the speci�ed

line.

<CR> Repeat last n or s.

l min+incr List incr+1 lines starting at min. If min is omitted, starts where last listing left o�.

If incr is omitted, previous value of incr is used.

l min-max List lines in the indicated range.

l line List just the indicated line.

l List next window.

- List previous window.

w line List window around line.

l subname List subroutine. If it's a long subroutine it just lists the beginning. Use `̀ l'' to list

more.

/pattern/ Regular expression search forward for pattern; the �nal / is optional.

?pattern? Regular expression search backward for pattern; the �nal ? is optional.

L List lines that have breakpoints or actions.

S Lists the names of all subroutines.

t Toggle trace mode on or o�.

b line condition

Set a breakpoint. If line is omitted, sets a breakpoint on the line that is about to be

executed. If a condition is speci�ed, it is evaluated each time the statement is

reached and a breakpoint is taken only if the condition is true. Breakpoints may

only be set on lines that begin an executable statement.

b subname condition

Set breakpoint at �rst executable line of subroutine.

Release 4.0 Patchlevel 36 72

PERL(1) PERL(1)

Style

Each programmer will, of course, have his or her own preferences in regards to formatting, but

there are some general guidelines that will make your programs easier to read.

1. Just because you CAN do something a particular way doesn't mean that you SHOULD do it

that way. Perl is designed to give you several ways to do anything, so consider picking the

most readable one. For instance

open(FOO,$foo) jj die "Can't open $foo: $!";

is better than

die "Can't open $foo: $!" unless open(FOO,$foo);

because the second way hides the main point of the statement in a modi�er. On the other

hand

print "Starting analysisnn" if $verbose;

is better than

$verbose && print "Starting analysisnn";

since the main point isn't whether the user typed -v or not.

Similarly, just because an operator lets you assume default arguments doesn't mean that you

have to make use of the defaults. The defaults are there for lazy systems programmers writ-

ing one-shot programs. If you want your program to be readable, consider supplying the

argument.

Along the same lines, just because you can omit parentheses in many places doesn't mean

that you ought to:

return print reverse sort num values array;

return print(reverse(sort num (values(%array))));

When in doubt, parenthesize. At the very least it will let some poor schmuck bounce on the

% key in vi.

Even if you aren't in doubt, consider the mental welfare of the person who has to maintain

the code after you, and who will probably put parens in the wrong place.

2. Don't go through silly contortions to exit a loop at the top or the bottom, when perl provides

the "last" operator so you can exit in the middle. Just outdent it a little to make it more

visible:

line:

for (;;) f

statements;

last line if $foo;

next line if /^#/;

statements;

g

Release 4.0 Patchlevel 36 71

PERL(1) PERL(1)

are kept in package `̀ main''. In addition, the identi�ers STDIN, STDOUT, STDERR, ARGV,

ARGVOUT, ENV, INC and SIG are forced to be in package `̀ main'', even when used for other

purposes than their built-in one. Note also that, if you have a package called `̀ m'', `̀ s'' or `̀ y'', the

you can't use the quali�ed form of an identi�er since it will be interpreted instead as a pattern

match, a substitution or a translation.

Eval'ed strings are compiled in the package in which the eval was compiled in. (Assignments to

$SIGfg, however, assume the signal handler speci�ed is in the main package. Qualify the signal

handler name if you wish to have a signal handler in a package.) For an example, examine

perldb.pl in the perl library. It initially switches to the DB package so that the debugger doesn't

interfere with variables in the script you are trying to debug. At various points, however, it tem-

porarily switches back to the main package to evaluate various expressions in the context of the

main package.

The symbol table for a package happens to be stored in the associative array of that name

prepended with an underscore. The value in each entry of the associative array is what you are

referring to when you use the *name notation. In fact, the following have the same e�ect (in

package main, anyway), though the �rst is more e�cient because it does the symbol table lookups

at compile time:

local(*foo) = *bar;

local($ mainf'foo'g) = $ mainf'bar'g;

You can use this to print out all the variables in a package, for instance. Here is dumpvar.pl from

the perl library:

package dumpvar;

sub main'dumpvar f

($package) = @ ;

local(*stab) = eval("* $package");

while (($key,$val) = each(%stab)) f

f

local(*entry) = $val;

if (de�ned $entry) f

print "n$$key = '$entry'nn";

g

if (de�ned @entry) f

print "n@$key = (nn";

foreach $num ($[.. $#entry) f

print " $numnt'",$entry[$num],"'nn";

g

print ")nn";

g

if ($key ne " $package" && de�ned %entry) f

print "n%$key = (nn";

foreach $key (sort keys(%entry)) f

print " $keynt'",$entryf$keyg,"'nn";

g

print ")nn";

g

g

g

g

Note that, even though the subroutine is compiled in package dumpvar, the name of the subrou-

tine is quali�ed so that its name is inserted into package `̀ main''.

Release 4.0 Patchlevel 36 70

PERL(1) PERL(1)

$^P The internal ag that the debugger clears so that it doesn't debug itself. You could con-

ceivable disable debugging yourself by clearing it.

$^T The time at which the script began running, in seconds since the epoch. The values

returned by the �M , �A and �C �letests are based on this value.

$^W The current value of the warning switch. (Mnemonic: related to the �w switch.)

$^X The name that Perl itself was executed as, from argv[0].

$ARGV contains the name of the current �le when reading from <>.

@ARGV

The array ARGV contains the command line arguments intended for the script. Note

that $#ARGV is the generally number of arguments minus one, since $ARGV[0] is the

�rst argument, NOT the command name. See $0 for the command name.

@INC The array INC contains the list of places to look for perl scripts to be evaluated by the

`̀ do EXPR'' command or the `̀ require'' command. It initially consists of the arguments

to any �I command line switches, followed by the default perl library, probably

`̀ /usr/local/lib/perl'', followed by `̀ .'', to represent the current directory.

%INC The associative array INC contains entries for each �lename that has been included via

`̀ do'' or `̀ require''. The key is the �lename you speci�ed, and the value is the location of

the �le actually found. The `̀ require'' command uses this array to determine whether a

given �le has already been included.

$ENVfexprg

The associative array ENV contains your current environment. Setting a value in ENV

changes the environment for child processes.

$SIGfexprg

The associative array SIG is used to set signal handlers for various signals. Example:

sub handler f # 1st argument is signal name

local($sig) = @ ;

print "Caught a SIG$sig��shutting downnn";

close(LOG);

exit(0);

g

$SIGf�INT�g = �handler�;

$SIGf�QUIT�g = �handler�;

. . .

$SIGf�INT�g = �DEFAULT�; # restore default action

$SIGf�QUIT�g = �IGNORE�; # ignore SIGQUIT

The SIG array only contains values for the signals actually set within the perl script.

Packages

Perl provides a mechanism for alternate namespaces to protect packages from stomping on each

others variables. By default, a perl script starts compiling into the package known as `̀ main''. By

use of the package declaration, you can switch namespaces. The scope of the package declaration

is from the declaration itself to the end of the enclosing block (the same scope as the local() oper-

ator). Typically it would be the �rst declaration in a �le to be included by the `̀ require'' operator.

You can switch into a package in more than one place; it merely inuences which symbol table is

used by the compiler for the rest of that block. You can refer to variables and �lehandles in other

packages by pre�xing the identi�er with the package name and a single quote. If the package

name is null, the `̀ main'' package as assumed.

Only identi�ers starting with letters are stored in the packages symbol table. All other symbols

Release 4.0 Patchlevel 36 69

PERL(1) PERL(1)

($foof$ag,$foof$bg,$foof$cg)

Default is "n034", the same as SUBSEP in awk . Note that if your keys contain binary

data there might not be any safe value for $;. (Mnemonic: comma (the syntactic sub-

script separator) is a semi-semicolon. Yeah, I know, it's pretty lame, but $, is already

taken for something more important.)

$! If used in a numeric context, yields the current value of errno, with all the usual caveats.

(This means that you shouldn't depend on the value of $! to be anything in particular

unless you've gotten a speci�c error return indicating a system error.) If used in a string

context, yields the corresponding system error string. You can assign to $! in order to

set errno if, for instance, you want $! to return the string for error n, or you want to set

the exit value for the die operator. (Mnemonic: What just went bang?)

$@ The perl syntax error message from the last eval command. If null, the last eval parsed

and executed correctly (although the operations you invoked may have failed in the nor-

mal fashion). (Mnemonic: Where was the syntax error `̀ at'' ?)

$< The real uid of this process. (Mnemonic: it's the uid you came FROM, if you're running

setuid.)

$> The e�ective uid of this process. Example:

$< = $>; # set real uid to the e�ective uid

($<,$>) = ($>,$<); # swap real and e�ective uid

(Mnemonic: it's the uid you went TO, if you're running setuid.) Note: $< and $> can

only be swapped on machines supporting setreuid().

$(The real gid of this process. If you are on a machine that supports membership in multi-

ple groups simultaneously, gives a space separated list of groups you are in. The �rst

number is the one returned by getgid(), and the subsequent ones by getgroups(), one of

which may be the same as the �rst number. (Mnemonic: parentheses are used to

GROUP things. The real gid is the group you LEFT, if you're running setgid.)

$) The e�ective gid of this process. If you are on a machine that supports membership in

multiple groups simultaneously, gives a space separated list of groups you are in. The

�rst number is the one returned by getegid(), and the subsequent ones by getgroups(),

one of which may be the same as the �rst number. (Mnemonic: parentheses are used to

GROUP things. The e�ective gid is the group that's RIGHT for you, if you're running

setgid.)

Note: $<, $>, $(and $) can only be set on machines that support the corresponding

set[re][ug]id() routine. $(and $) can only be swapped on machines supporting setregid().

$: The current set of characters after which a string may be broken to �ll continuation

�elds (starting with ^) in a format. Default is " nn-", to break on whitespace or

hyphens. (Mnemonic: a `̀ colon'' in poetry is a part of a line.)

$^D The current value of the debugging ags. (Mnemonic: value of �D switch.)

$^F The maximum system �le descriptor, ordinarily 2. System �le descriptors are passed to

subprocesses, while higher �le descriptors are not. During an open, system �le descrip-

tors are preserved even if the open fails. Ordinary �le descriptors are closed before the

open is attempted.

$^I The current value of the inplace-edit extension. Use undef to disable inplace editing.

(Mnemonic: value of �i switch.)

$^L What formats output to perform a formfeed. Default is nf.

Release 4.0 Patchlevel 36 68

PERL(1) PERL(1)

$+ The last bracket matched by the last search pattern. This is useful if you don't know

which of a set of alternative patterns matched. For example:

/Version: (.*)jRevision: (.*) / && ($rev = $+);

(Mnemonic: be positive and forward looking.)

$* Set to 1 to do multiline matching within a string, 0 to tell perl that it can assume that

strings contain a single line, for the purpose of optimizing pattern matches. Pattern

matches on strings containing multiple newlines can produce confusing results when $* is

0. Default is 0. (Mnemonic: * matches multiple things.) Note that this variable only

inuences the interpretation of ^ and $. A literal newline can be searched for even when

$* == 0.

$0 Contains the name of the �le containing the perl script being executed. Assigning to $0

modi�es the argument area that the ps(1) program sees. (Mnemonic: same as sh and

ksh.)

$<digit>

Contains the subpattern from the corresponding set of parentheses in the last pattern

matched, not counting patterns matched in nested blocks that have been exited already.

(Mnemonic: like ndigit.)

$[The index of the �rst element in an array, and of the �rst character in a substring.

Default is 0, but you could set it to 1 to make perl behave more like awk (or Fortran)

when subscripting and when evaluating the index() and substr() functions. (Mnemonic: [

begins subscripts.)

$] The string printed out when you say `̀ perl -v''. It can be used to determine at the begin-

ning of a script whether the perl interpreter executing the script is in the right range of

versions. If used in a numeric context, returns the version + patchlevel / 1000. Exam-

ple:

see if getc is available

($version,$patchlevel) =

$] =~ /(nd+n.nd+).*nnPatch level: (nd+)/;

print STDERR "(No �lename completion available.)nn"

if $version * 1000 + $patchlevel < 2016;

or, used numerically,

warn "No checksumming!nn" if $] < 3.019;

(Mnemonic: Is this version of perl in the right bracket?)

$; The subscript separator for multi-dimensional array emulation. If you refer to an asso-

ciative array element as

$foof$a,$b,$cg

it really means

$foofjoin($;, $a, $b, $c)g

But don't put

@foof$a,$b,$cg # a slice|note the @

which means

Release 4.0 Patchlevel 36 67

PERL(1) PERL(1)

$n The output record separator for the print operator. Ordinarily the print operator simply

prints out the comma separated �elds you specify, with no trailing newline or record sep-

arator assumed. In order to get behavior more like awk , set this variable as you would

set awk 's ORS variable to specify what is printed at the end of the print. (Mnemonic:

you set $n instead of adding nn at the end of the print. Also, it's just like /, but it's

what you get `̀ back'' from perl .)

$# The output format for printed numbers. This variable is a half-hearted attempt to emu-

late awk 's OFMT variable. There are times, however, when awk and perl have di�ering

notions of what is in fact numeric. Also, the initial value is %.20g rather than %.6g, so

you need to set $# explicitly to get awk 's value. (Mnemonic: # is the number sign.)

$% The current page number of the currently selected output channel. (Mnemonic: % is

page number in nro�.)

$= The current page length (printable lines) of the currently selected output channel.

Default is 60. (Mnemonic: = has horizontal lines.)

$� The number of lines left on the page of the currently selected output channel.

(Mnemonic: lines on page � lines printed.)

$~ The name of the current report format for the currently selected output channel.

Default is name of the �lehandle. (Mnemonic: brother to $^.)

$^ The name of the current top-of-page format for the currently selected output channel.

Default is name of the �lehandle with `̀ TOP'' appended. (Mnemonic: points to top of

page.)

$j If set to nonzero, forces a ush after every write or print on the currently selected output

channel. Default is 0. Note that STDOUT will typically be line bu�ered if output is to

the terminal and block bu�ered otherwise. Setting this variable is useful primarily when

you are outputting to a pipe, such as when you are running a perl script under rsh and

want to see the output as it's happening. (Mnemonic: when you want your pipes to be

piping hot.)

$$ The process number of the perl running this script. (Mnemonic: same as shells.)

$? The status returned by the last pipe close, backtick (��) command or system operator.

Note that this is the status word returned by the wait() system call, so the exit value of

the subprocess is actually ($? >> 8). $? & 255 gives which signal, if any, the process

died from, and whether there was a core dump. (Mnemonic: similar to sh and ksh.)

$& The string matched by the last successful pattern match (not counting any matches hid-

den within a BLOCK or eval enclosed by the current BLOCK). (Mnemonic: like & in

some editors.)

$� The string preceding whatever was matched by the last successful pattern match (not

counting any matches hidden within a BLOCK or eval enclosed by the current BLOCK).

(Mnemonic: � often precedes a quoted string.)

$� The string following whatever was matched by the last successful pattern match (not

counting any matches hidden within a BLOCK or eval enclosed by the current BLOCK).

(Mnemonic: � often follows a quoted string.) Example:

$ = �abcdefghi�;

/def/;

print "$�:$&:$�nn"; # prints abc:def:ghi

Release 4.0 Patchlevel 36 66

PERL(1) PERL(1)

print "accept oknn";

($af,$port,$inetaddr) = unpack($sockaddr,$addr);

@inetaddr = unpack('C4',$inetaddr);

print "$af $port @inetaddrnn";

while (<NS>) f

print;

print NS;

g

g

Prede�ned Names

The following names have special meaning to perl . I could have used alphabetic symbols for some

of these, but I didn't want to take the chance that someone would say reset `̀ a�zA�Z'' and wipe

them all out. You'll just have to su�er along with these silly symbols. Most of them have reason-

able mnemonics, or analogues in one of the shells.

$ The default input and pattern-searching space. The following pairs are equivalent:

while (<>) f . . .# only equivalent in while!

while ($ = <>) f . . .

/ ^Subject:/

$ =~ / ^Subject:/

y/a�z/A�Z/

$ =~ y/a�z/A�Z/

chop

chop($)

(Mnemonic: underline is understood in certain operations.)

$. The current input line number of the last �lehandle that was read. Readonly. Remem-

ber that only an explicit close on the �lehandle resets the line number. Since <> never

does an explicit close, line numbers increase across ARGV �les (but see examples under

eof). (Mnemonic: many programs use . to mean the current line number.)

$/ The input record separator, newline by default. Works like awk 's RS variable, including

treating blank lines as delimiters if set to the null string. You may set it to a multichar-

acter string to match a multi-character delimiter. Note that setting it to "nnnn" means

something slightly di�erent than setting it to "", if the �le contains consecutive blank

lines. Setting it to "" will treat two or more consecutive blank lines as a single blank

line. Setting it to "nnnn" will blindly assume that the next input character belongs to

the next paragraph, even if it's a newline. (Mnemonic: / is used to delimit line bound-

aries when quoting poetry.)

$, The output �eld separator for the print operator. Ordinarily the print operator simply

prints out the comma separated �elds you specify. In order to get behavior more like

awk , set this variable as you would set awk 's OFS variable to specify what is printed

between �elds. (Mnemonic: what is printed when there is a , in your print statement.)

$"" This is like $, except that it applies to array values interpolated into a double-quoted

string (or similar interpreted string). Default is a space. (Mnemonic: obvious, I think.)

Release 4.0 Patchlevel 36 65

PERL(1) PERL(1)

($name, $aliases, $proto) = getprotobyname('tcp');

($name, $aliases, $port) = getservbyname($port, 'tcp')

unless $port =~ /^nd+$/;

($name, $aliases, $type, $len, $thisaddr) = gethostbyname($hostname);

($name, $aliases, $type, $len, $thataddr) = gethostbyname($them);

$this = pack($sockaddr, &AF INET, 0, $thisaddr);

$that = pack($sockaddr, &AF INET, $port, $thataddr);

socket(S, &PF INET, &SOCK STREAM, $proto) jj die "socket: $!";

bind(S, $this) jj die "bind: $!";

connect(S, $that) jj die "connect: $!";

select(S); $j = 1; select(stdout);

if ($child = fork) f

while (<>) f

print S;

g

sleep 3;

do dokill();

g

else f

while (<S>) f

print;

g

g

And here's a server:

($port) = @ARGV;

$port = 2345 unless $port;

require 'sys/socket.ph';

$sockaddr = 'S n a4 x8';

($name, $aliases, $proto) = getprotobyname('tcp');

($name, $aliases, $port) = getservbyname($port, 'tcp')

unless $port =~ /^nd+$/;

$this = pack($sockaddr, &AF INET, $port, "n0n0n0n0");

select(NS); $j = 1; select(stdout);

socket(S, &PF INET, &SOCK STREAM, $proto) jj die "socket: $!";

bind(S, $this) jj die "bind: $!";

listen(S, 5) jj die "connect: $!";

select(S); $j = 1; select(stdout);

for (;;) f

print "Listening againnn";

($addr = accept(NS,S)) jj die $!;

Release 4.0 Patchlevel 36 64

PERL (1) PERL (1)

a report from a bug report form

format STDOUT_TOP =

Bug Reports

@<<<<<<<<<<<<<<<<<<<<<<< @jjj @>>>>>>>>>>>>>>>>>>>>>>>

$system, $%, $date

--

.

format STDOUT =

Subject: @<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$subject

Index: @<<<<<<<<<<<<<<<<<<<<<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$index, $description

Priority: @<<<<<<<<<< Date: @<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$priority, $date, $description

From: @<<<<<<<<<<<<<<<<<<<<<<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$from, $description

Assigned to: @<<<<<<<<<<<<<<<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$programmer, $description

~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$description

~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$description

~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$description

~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$description

~ ^<<<<<<<<<<<<<<<<<<<<<<<...

$description

.

It is possible to intermix prints with writes on the same output channel, but you'll have to handle

$� (lines left on the page) yourself.

If you are printing lots of �elds that are usually blank, you should consider using the reset opera-

tor between records. Not only is it more e�cient, but it can prevent the bug of adding another

�eld and forgetting to zero it.

Interprocess Communication

The IPC facilities of perl are built on the Berkeley socket mechanism. If you don't have sockets,

you can ignore this section. The calls have the same names as the corresponding system calls, but

the arguments tend to di�er, for two reasons. First, perl �le handles work di�erently than C �le

descriptors. Second, perl already knows the length of its strings, so you don't need to pass that

information. Here is a sample client (untested):

($them,$port) = @ARGV;

$port = 2345 unless $port;

$them = 'localhost' unless $them;

$SIGf'INT'g = 'dokill';

sub dokill f kill 9,$child if $child; g

require 'sys/socket.ph';

$sockaddr = 'S n a4 x8';

chop($hostname = `hostname`);

Release 4.0 Patchlevel 36 63

PERL(1) PERL(1)

of right justi�cation, you may also use # characters (with an optional .) to specify a numeric �eld.

(Use of ^ instead of @ causes the �eld to be blanked if unde�ned.) If any of the values supplied

for these �elds contains a newline, only the text up to the newline is printed. The special �eld @*

can be used for printing multi-line values. It should appear by itself on a line.

The values are speci�ed on the following line, in the same order as the picture �elds. The values

should be separated by commas.

Picture �elds that begin with ^ rather than @ are treated specially. The value supplied must be a

scalar variable name which contains a text string. Perl puts as much text as it can into the �eld,

and then chops o� the front of the string so that the next time the variable is referenced, more of

the text can be printed. Normally you would use a sequence of �elds in a vertical stack to print

out a block of text. If you like, you can end the �nal �eld with . . ., which will appear in the out-

put if the text was too long to appear in its entirety. You can change which characters are legal

to break on by changing the variable $: to a list of the desired characters.

Since use of ^ �elds can produce variable length records if the text to be formatted is short, you

can suppress blank lines by putting the tilde (~) character anywhere in the line. (Normally you

should put it in the front if possible, for visibility.) The tilde will be translated to a space upon

output. If you put a second tilde contiguous to the �rst, the line will be repeated until all the

�elds on the line are exhausted. (If you use a �eld of the @ variety, the expression you supply had

better not give the same value every time forever!)

Examples:

a report on the /etc/passwd file

format STDOUT_TOP =

Passwd File

Name Login Office Uid Gid Home

--

.

format STDOUT =

@<<<<<<<<<<<<<<<<<< @jjjjjjj @<<<<<<@>>>> @>>>> @<<<<<<<<<<<<<<<<<

$name, $login, $office,$uid,$gid, $home

.

Re l e a s e 4 . 0 Pa t c h l e v e l 3 6 6 2

PERL(1) PERL(1)

the assumption that the string contains only one line. The behavior of ^ and $ on embedded new-

lines will be inconsistent. You may, however, wish to treat a string as a multi-line bu�er, such

that the ^ will match after any newline within the string, and $ will match before any newline.

At the cost of a little more overhead, you can do this by setting the variable $* to 1. Setting it

back to 0 makes perl revert to its old behavior.

To facilitate multi-line substitutions, the . character never matches a newline (even when $* is 0).

In particular, the following leaves a newline on the $ string:

$ = <STDIN>;

s/.*(some string).*/$1/;

If the newline is unwanted, try one of

s/.*(some string).*nn/$1/;

s/.*(some string)[^n000]*/$1/;

s/.*(some string)(.jnn)*/$1/;

chop; s/.*(some string).*/$1/;

/(some string)/ && ($ = $1);

Any item of a regular expression may be followed with digits in curly brackets of the form fn,mg,

where n gives the minimum number of times to match the item and m gives the maximum. The

form fng is equivalent to fn,ng and matches exactly n times. The form fn,g matches n or more

times. (If a curly bracket occurs in any other context, it is treated as a regular character.) The *

modi�er is equivalent to f0,g, the + modi�er to f1,g and the ? modi�er to f0,1g. There is no

limit to the size of n or m, but large numbers will chew up more memory.

You will note that all backslashed metacharacters in perl are alphanumeric, such as nb, nw, nn.

Unlike some other regular expression languages, there are no backslashed symbols that aren't

alphanumeric. So anything that looks like nn, n(, n), n<, n>, nf, or ng is always interpreted as a

literal character, not a metacharacter. This makes it simple to quote a string that you want to

use for a pattern but that you are afraid might contain metacharacters. Simply quote all the non-

alphanumeric characters:

$pattern =~ s/(nW)/nn$1/g;

Formats

Output record formats for use with the write operator may declared as follows:

format NAME =

FORMLIST

.

If name is omitted, format `̀ STDOUT'' is de�ned. FORMLIST consists of a sequence of lines,

each of which may be of one of three types:

1. A comment.

2. A `̀ picture'' line giving the format for one output line.

3. An argument line supplying values to plug into a picture line.

Picture lines are printed exactly as they look, except for certain �elds that substitute values into

the line. Each picture �eld starts with either @ or ^. The @ �eld (not to be confused with the

array marker @) is the normal case; ^ �elds are used to do rudimentary multi-line text block �ll-

ing. The length of the �eld is supplied by padding out the �eld with multiple <, >, or j charac-

ters to specify, respectively, left justi�cation, right justi�cation, or centering. As an alternate form

Release 4.0 Patchlevel 36 61

PERL(1) PERL(1)

$elem *= 2;

g

g

do doubleary(*foo);

do doubleary(*bar);

Assignment to *name is currently recommended only inside a local(). You can actually assign to

*name anywhere, but the previous referent of *name may be stranded forever. This may or may

not bother you.

Note that scalars are already passed by reference, so you can modify scalar arguments without

using this mechanism by referring explicitly to the $ [nnn] in question. You can modify all the

elements of an array by passing all the elements as scalars, but you have to use the * mechanism

to push, pop or change the size of an array. The * mechanism will probably be more e�cient in

any case.

Since a *name value contains unprintable binary data, if it is used as an argument in a print, or

as a %s argument in a printf or sprintf, it then has the value '*name', just so it prints out pretty.

Even if you don't want to modify an array, this mechanism is useful for passing multiple arrays in

a single LIST, since normally the LIST mechanism will merge all the array values so that you

can't extract out the individual arrays.

Regular Expressions

The patterns used in pattern matching are regular expressions such as those supplied in the Ver-

sion 8 regexp routines. (In fact, the routines are derived from Henry Spencer's freely redis-

tributable reimplementation of the V8 routines.) In addition, nw matches an alphanumeric char-

acter (including `̀ '') and nW a nonalphanumeric. Word boundaries may be matched by nb, and

non-boundaries by nB. A whitespace character is matched by ns, non-whitespace by nS. A

numeric character is matched by nd, non-numeric by nD. You may use nw, ns and nd within char-

acter classes. Also, nn, nr, nf, nt and nNNN have their normal interpretations. Within character

classes nb represents backspace rather than a word boundary. Alternatives may be separated by j.

The bracketing construct (. . .) may also be used, in which case n<digit> matches the digit'th

substring. (Outside of the pattern, always use $ instead of n in front of the digit. The scope of

$<digit> (and $�, $& and $�) extends to the end of the enclosing BLOCK or eval string, or to

the next pattern match with subexpressions. The n<digit> notation sometimes works outside the

current pattern, but should not be relied upon.) You may have as many parentheses as you wish.

If you have more than 9 substrings, the variables $10, $11, ... refer to the corresponding substring.

Within the pattern, n10, n11, etc. refer back to substrings if there have been at least that many

left parens before the backreference. Otherwise (for backward compatibilty) n10 is the same as

n010, a backspace, and n11 the same as n011, a tab. And so on. (n1 through n9 are always back-

references.)

$+ returns whatever the last bracket match matched. $& returns the entire matched string. ($0

used to return the same thing, but not any more.) $� returns everything before the matched

string. $� returns everything after the matched string. Examples:

s/ ^ ([^]*) *([^]*) / $2 $1 /; # swap �rst two words

if (/Time: (. .): (. .): (. .) /) f

$hours = $1;

$minutes = $2;

$seconds = $3;

g

By default, the ^ character is only guaranteed to match at the beginning of the string, the $ char-

acter only at the end (or before the newline at the end) and perl does certain optimizations with

Release 4.0 Patchlevel 36 60

PERL(1) PERL(1)

Example:

get a line, combining continuation lines

that start with whitespace

sub get line f

$thisline = $lookahead;

line: while ($lookahead = <STDIN>) f

if ($lookahead =~ /^[n t] /) f

$thisline .= $lookahead;

g

else f

last line;

g

g

$thisline;

g

$lookahead = <STDIN>; # get �rst line

while ($ = do get line()) f

. . .

g

Use array assignment to a local list to name your formal arguments:

sub maybeset f

local($key, $value) = @ ;

$foof$keyg = $value unless $foof$keyg;

g

This also has the e�ect of turning call-by-reference into call-by-value, since the assignment copies

the values.

Subroutines may be called recursively. If a subroutine is called using the & form, the argument

list is optional. If omitted, no @ array is set up for the subroutine; the @ array at the time of

the call is visible to subroutine instead.

do foo(1,2,3); # pass three arguments

&foo(1,2,3); # the same

do foo(); # pass a null list

&foo(); # the same

&foo; # pass no arguments|more e�cient

Passing By Reference

Sometimes you don't want to pass the value of an array to a subroutine but rather the name of it,

so that the subroutine can modify the global copy of it rather than working with a local copy. In

perl you can refer to all the objects of a particular name by pre�xing the name with a star: *foo.

When evaluated, it produces a scalar value that represents all the objects of that name, including

any �lehandle, format or subroutine. When assigned to within a local() operation, it causes the

name mentioned to refer to whatever * value was assigned to it. Example:

sub doubleary f

local(*someary) = @ ;

foreach $elem (@someary) f

Release 4.0 Patchlevel 36 59

PERL(1) PERL(1)

In the absence of parentheses, the precedence of list operators such as print, sort or chmod is

either very high or very low depending on whether you look at the left side of operator or the

right side of it. For example, in

@ary = (1, 3, sort 4, 2);

print @ary; # prints 1324

the commas on the right of the sort are evaluated before the sort, but the commas on the left are

evaluated after. In other words, list operators tend to gobble up all the arguments that follow

them, and then act like a simple term with regard to the preceding expression. Note that you

have to be careful with parens:

These evaluate exit before doing the print:

print($foo, exit); # Obviously not what you want.

print $foo, exit; # Nor is this.

These do the print before evaluating exit:

(print $foo), exit; # This is what you want.

print($foo), exit; # Or this.

print ($foo), exit; # Or even this.

Also note that

print ($foo & 255) + 1, "nn";

probably doesn't do what you expect at �rst glance.

Subroutines

A subroutine may be declared as follows:

sub NAME BLOCK

Any arguments passed to the routine come in as array @ , that is ($ [0], $ [1], . . .). The array

@ is a local array, but its values are references to the actual scalar parameters. The return value

of the subroutine is the value of the last expression evaluated, and can be either an array value or

a scalar value. Alternately, a return statement may be used to specify the returned value and exit

the subroutine. To create local variables see the local operator.

A subroutine is called using the do operator or the & operator.

Example:

sub MAX f

local($max) = pop(@);

foreach $foo (@) f

$max = $foo if $max < $foo;

g

$max;

g

. . .

$bestday = &MAX($mon,$tue,$wed,$thu,$fri);

Release 4.0 Patchlevel 36 58

PERL(1) PERL(1)

If FILEHANDLE is unspeci�ed, output goes to the current default output channel,

which starts out as STDOUT but may be changed by the select operator. If the FILE-

HANDLE is an EXPR, then the expression is evaluated and the resulting string is used

to look up the name of the FILEHANDLE at run time. For more on formats, see the

section on formats later on.

Note that write is NOT the opposite of read.

Precedence

Perl operators have the following associativity and precedence:

nonassoc print printf exec system sort reverse

chmod chown kill unlink utime die return

left ,

right = += �= *= etc.

right ?:

nonassoc . .

left jj

left &&

left j ^

left &

nonassoc == != <=> eq ne cmp

nonassoc < > <= >= lt gt le ge

nonassoc chdir exit eval reset sleep rand umask

nonassoc �r �w �x etc.

left << >>

left + � .

left * / % x

left =~ !~

right ! ~ and unary minus

right **

nonassoc ++ ��

left `('

As mentioned earlier, if any list operator (print, etc.) or any unary operator (chdir, etc.) is fol-

lowed by a left parenthesis as the next token on the same line, the operator and arguments within

parentheses are taken to be of highest precedence, just like a normal function call. Examples:

chdir $foo jj die; # (chdir $foo) jj die

chdir($foo) jj die; # (chdir $foo) jj die

chdir ($foo) jj die; # (chdir $foo) jj die

chdir +($foo) jj die; # (chdir $foo) jj die

but, because * is higher precedence than jj:

chdir $foo * 20; # chdir ($foo * 20)

chdir($foo) * 20; # (chdir $foo) * 20

chdir ($foo) * 20; # (chdir $foo) * 20

chdir +($foo) * 20; # chdir ($foo * 20)

rand 10 * 20; # rand (10 * 20)

rand(10) * 20; # (rand 10) * 20

rand (10) * 20; # (rand 10) * 20

rand +(10) * 20; # rand (10 * 20)

Release 4.0 Patchlevel 36 57

PERL(1) PERL(1)

vec(EXPR,OFFSET,BITS)

Treats a string as a vector of unsigned integers, and returns the value of the bit�eld spec-

i�ed. May also be assigned to. BITS must be a power of two from 1 to 32.

Vectors created with vec() can also be manipulated with the logical operators j, & and ^,

which will assume a bit vector operation is desired when both operands are strings. This

interpretation is not enabled unless there is at least one vec() in your program, to protect

older programs.

To transform a bit vector into a string or array of 0's and 1's, use these:

$bits = unpack("b*", $vector);

@bits = split(//, unpack("b*", $vector));

If you know the exact length in bits, it can be used in place of the *.

wait Waits for a child process to terminate and returns the pid of the deceased process, or -1

if there are no child processes. The status is returned in $?.

waitpid(PID,FLAGS)

Waits for a particular child process to terminate and returns the pid of the deceased pro-

cess, or -1 if there is no such child process. The status is returned in $?. If you say

require "sys/wait.h";

. . .

waitpid(-1,&WNOHANG);

then you can do a non-blocking wait for any process. Non-blocking wait is only available

on machines supporting either the waitpid (2) or wait4 (2) system calls. However, wait-

ing for a particular pid with FLAGS of 0 is implemented everywhere. (Perl emulates the

system call by remembering the status values of processes that have exited but have not

been harvested by the Perl script yet.)

wantarray

Returns true if the context of the currently executing subroutine is looking for an array

value. Returns false if the context is looking for a scalar.

return wantarray ? () : undef;

warn(LIST)

warn LIST

Produces a message on STDERR just like `̀ die'', but doesn't exit.

write(FILEHANDLE)

write(EXPR)

write Writes a formatted record (possibly multi-line) to the speci�ed �le, using the format

associated with that �le. By default the format for a �le is the one having the same

name is the �lehandle, but the format for the current output channel (see select) may be

set explicitly by assigning the name of the format to the $~ variable.

Top of form processing is handled automatically: if there is insu�cient room on the cur-

rent page for the formatted record, the page is advanced by writing a form feed, a special

top-of-page format is used to format the new page header, and then the record is written.

By default the top-of-page format is the name of the �lehandle with `̀ TOP'' appended,

but it may be dynamicallly set to the format of your choice by assigning the name to the

$^ variable while the �lehandle is selected. The number of lines remaining on the current

page is in variable $-, which can be set to 0 to force a new page.

Release 4.0 Patchlevel 36 56

PERL(1) PERL(1)

supplied to perl . Even if these conditions are met, be warned that unlinking a directory

can inict damage on your �lesystem. Use rmdir instead.

unpack(TEMPLATE,EXPR)

Unpack does the reverse of pack: it takes a string representing a structure and expands it

out into an array value, returning the array value. (In a scalar context, it merely returns

the �rst value produced.) The TEMPLATE has the same format as in the pack func-

tion. Here's a subroutine that does substring:

sub substr f

local($what,$where,$howmuch) = @ ;

unpack("x$where a$howmuch", $what);

g

and then there's

sub ord f unpack("c",$ [0]); g

In addition, you may pre�x a �eld with a %<number> to indicate that you want a

<number>-bit checksum of the items instead of the items themselves. Default is a 16-bit

checksum. For example, the following computes the same number as the System V sum

program:

while (<>) f

$checksum += unpack("%16C*", $);

g

$checksum %= 65536;

unshift(ARRAY,LIST)

Does the opposite of a shift . Or the opposite of a push, depending on how you look at

it. Prepends list to the front of the array, and returns the number of elements in the new

array.

unshift(ARGV, ��e�) unless $ARGV[0] =~ /^�/;

utime(LIST)

utime LIST

Changes the access and modi�cation times on each �le of a list of �les. The �rst two ele-

ments of the list must be the NUMERICAL access and modi�cation times, in that order.

Returns the number of �les successfully changed. The inode modi�cation time of each

�le is set to the current time. Example of a `̀ touch'' command:

#!/usr/bin/perl

$now = time;

utime $now, $now, @ARGV;

values(ASSOC ARRAY)

values ASSOC ARRAY

Returns a normal array consisting of all the values of the named associative array. The

values are returned in an apparently random order, but it is the same order as either the

keys() or each() function would produce on the same array. See also keys() and each().

Release 4.0 Patchlevel 36 55

PERL(1) PERL(1)

null, the SEARCHLIST is replicated. This latter is useful for counting characters in a

class, or for squashing character sequences in a class.

Examples:

$ARGV[1] =~ y/A�Z/a�z/; # canonicalize to lower case

$cnt = tr/*/*/; # count the stars in $

$cnt = tr/0�9//; # count the digits in $

tr/a�zA�Z//s; # bookkeeper �> bokeper

($HOST = $host) =~ tr/a�z/A�Z/;

y/a�zA�Z/ /cs; # change non-alphas to single space

tr/n200�n377/n0�n177/; # delete 8th bit

truncate(FILEHANDLE,LENGTH)

truncate(EXPR,LENGTH)

Truncates the �le opened on FILEHANDLE, or named by EXPR, to the speci�ed length.

Produces a fatal error if truncate isn't implemented on your system.

umask(EXPR)

umask EXPR

umask Sets the umask for the process and returns the old one. If EXPR is omitted, merely

returns current umask.

undef(EXPR)

undef EXPR

undef Unde�nes the value of EXPR, which must be an lvalue. Use only on a scalar value, an

entire array, or a subroutine name (using &). (Undef will probably not do what you

expect on most prede�ned variables or dbm array values.) Always returns the unde�ned

value. You can omit the EXPR, in which case nothing is unde�ned, but you still get an

unde�ned value that you could, for instance, return from a subroutine. Examples:

undef $foo;

undef $barf'blur'g;

undef @ary;

undef %assoc;

undef &mysub;

return (wantarray ? () : undef) if $they blew it;

unlink(LIST)

unlink LIST

Deletes a list of �les. Returns the number of �les successfully deleted.

$cnt = unlink �a�, �b�, �c�;

unlink @goners;

unlink <*.bak>;

Note: unlink will not delete directories unless you are superuser and the �U ag is

Release 4.0 Patchlevel 36 54

PERL(1) PERL(1)

system(LIST)

system LIST

Does exactly the same thing as `̀ exec LIST'' except that a fork is done �rst, and the par-

ent process waits for the child process to complete. Note that argument processing

varies depending on the number of arguments. The return value is the exit status of the

program as returned by the wait() call. To get the actual exit value divide by 256. See

also exec.

syswrite(FILEHANDLE,SCALAR,LENGTH,OFFSET)

syswrite(FILEHANDLE,SCALAR,LENGTH)

Attempts to write LENGTH bytes of data from variable SCALAR to the speci�ed FILE-

HANDLE, using the system call write(2). It bypasses stdio, so mixing this with prints

may cause confusion. Returns the number of bytes actually written, or undef if there

was an error. An OFFSET may be speci�ed to place the read data at some other place

than the beginning of the string.

tell(FILEHANDLE)

tell FILEHANDLE

tell Returns the current �le position for FILEHANDLE. FILEHANDLE may be an expres-

sion whose value gives the name of the actual �lehandle. If FILEHANDLE is omitted,

assumes the �le last read.

telldir(DIRHANDLE)

telldir DIRHANDLE

Returns the current position of the readdir() routines on DIRHANDLE. Value may be

given to seekdir() to access a particular location in a directory. Has the same caveats

about possible directory compaction as the corresponding system library routine.

time Returns the number of non-leap seconds since 00:00:00 UTC, January 1, 1970. Suitable

for feeding to gmtime() and localtime().

times Returns a four-element array giving the user and system times, in seconds, for this pro-

cess and the children of this process.

($user,$system,$cuser,$csystem) = times;

tr/SEARCHLIST/REPLACEMENTLIST/cds

y/SEARCHLIST/REPLACEMENTLIST/cds

Translates all occurrences of the characters found in the search list with the correspond-

ing character in the replacement list. It returns the number of characters replaced or

deleted. If no string is speci�ed via the =~ or !~ operator, the $ string is translated.

(The string speci�ed with =~ must be a scalar variable, an array element, or an assign-

ment to one of those, i.e. an lvalue.) For sed devotees, y is provided as a synonym for tr .

If the SEARCHLIST is delimited by bracketing quotes, the REPLACEMENTLIST has

its own pair of quotes, which may or may not be bracketing quotes, e.g. tr[A-Z][a-z] or

tr(+-*/)/ABCD/.

If the c modi�er is speci�ed, the SEARCHLIST character set is complemented. If the d

modi�er is speci�ed, any characters speci�ed by SEARCHLIST that are not found in

REPLACEMENTLIST are deleted. (Note that this is slightly more exible than the

behavior of some tr programs, which delete anything they �nd in the SEARCHLIST,

period.) If the s modi�er is speci�ed, sequences of characters that were translated to the

same character are squashed down to 1 instance of the character.

If the d modi�er was used, the REPLACEMENTLIST is always interpreted exactly as

speci�ed. Otherwise, if the REPLACEMENTLIST is shorter than the SEARCHLIST,

the �nal character is replicated till it is long enough. If the REPLACEMENTLIST is

Release 4.0 Patchlevel 36 53

PERL(1) PERL(1)

$search = �while (<>) f study;�;

foreach $word (@words) f

$search .= "++n$seenfn$ARGVg if /nnb$wordnnb/;nn";

g

$search .= "g";

@ARGV = @�les;

undef $/;

eval $search; # this screams

$/ = "nn"; # put back to normal input delim

foreach $�le (sort keys(%seen)) f

print $�le, "nn";

g

substr(EXPR,OFFSET,LEN)

substr(EXPR,OFFSET)

Extracts a substring out of EXPR and returns it. First character is at o�set 0, or what-

ever you've set $[to. If OFFSET is negative, starts that far from the end of the string.

If LEN is omitted, returns everything to the end of the string. You can use the substr()

function as an lvalue, in which case EXPR must be an lvalue. If you assign something

shorter than LEN, the string will shrink, and if you assign something longer than LEN,

the string will grow to accommodate it. To keep the string the same length you may

need to pad or chop your value using sprintf().

symlink(OLDFILE,NEWFILE)

Creates a new �lename symbolically linked to the old �lename. Returns 1 for success, 0

otherwise. On systems that don't support symbolic links, produces a fatal error at run

time. To check for that, use eval:

$symlink exists = (eval �symlink("","");�, $@ eq ��);

syscall(LIST)

syscall LIST

Calls the system call speci�ed as the �rst element of the list, passing the remaining ele-

ments as arguments to the system call. If unimplemented, produces a fatal error. The

arguments are interpreted as follows: if a given argument is numeric, the argument is

passed as an int. If not, the pointer to the string value is passed. You are responsible to

make sure a string is pre-extended long enough to receive any result that might be writ-

ten into a string. If your integer arguments are not literals and have never been inter-

preted in a numeric context, you may need to add 0 to them to force them to look like

numbers.

require 'syscall.ph'; # may need to run h2ph

syscall(&SYS write, �leno(STDOUT), "hi therenn", 9);

sysread(FILEHANDLE,SCALAR,LENGTH,OFFSET)

sysread(FILEHANDLE,SCALAR,LENGTH)

Attempts to read LENGTH bytes of data into variable SCALAR from the speci�ed

FILEHANDLE, using the system call read(2). It bypasses stdio, so mixing this with

other kinds of reads may cause confusion. Returns the number of bytes actually read, or

undef if there was an error. SCALAR will be grown or shrunk to the length actually

read. An OFFSET may be speci�ed to place the read data at some other place than the

beginning of the string.

Release 4.0 Patchlevel 36 52

PERL(1) PERL(1)

if (-x $�le && (($d) = stat()) && $d < 0) f

print "$�le is executable NFS �lenn";

g

(This only works on machines for which the device number is negative under NFS.)

study(SCALAR)

study SCALAR

study Takes extra time to study SCALAR ($ if unspeci�ed) in anticipation of doing many

pattern matches on the string before it is next modi�ed. This may or may not save time,

depending on the nature and number of patterns you are searching on, and on the distri-

bution of character frequencies in the string to be searched|you probably want to com-

pare runtimes with and without it to see which runs faster. Those loops which scan for

many short constant strings (including the constant parts of more complex patterns) will

bene�t most. You may have only one study active at a time|if you study a di�erent

scalar the �rst is `̀ unstudied''. (The way study works is this: a linked list of every char-

acter in the string to be searched is made, so we know, for example, where all the `k'

characters are. From each search string, the rarest character is selected, based on some

static frequency tables constructed from some C programs and English text. Only those

places that contain this `̀ rarest'' character are examined.)

For example, here is a loop which inserts index producing entries before any line contain-

ing a certain pattern:

while (<>) f

study;

print ".IX foonn" if /nbfoonb/;

print ".IX barnn" if /nbbarnb/;

print ".IX blurnn" if /nbblurnb/;

. . .

print;

g

In searching for /nbfoonb/, only those locations in $ that contain `f' will be looked at,

because `f' is rarer than `o'. In general, this is a big win except in pathological cases.

The only question is whether it saves you more time than it took to build the linked list

in the �rst place.

Note that if you have to look for strings that you don't know till runtime, you can build

an entire loop as a string and eval that to avoid recompiling all your patterns all the

time. Together with unde�ning $/ to input entire �les as one record, this can be very

fast, often faster than specialized programs like fgrep. The following scans a list of �les

(@�les) for a list of words (@words), and prints out the names of those �les that contain

a match:

Release 4.0 Patchlevel 36 51

PERL(1) PERL(1)

would have been 4 by default. In time critical applications it behooves you not to split

into more �elds than you really need.)

If the PATTERN contains parentheses, additional array elements are created from each

matching substring in the delimiter.

split(/([,-])/,"1-10,20");

produces the array value

(1,'-',10,',',20)

The pattern /PATTERN/ may be replaced with an expression to specify patterns that

vary at runtime. (To do runtime compilation only once, use /$variable/o.) As a special

case, specifying a space (� �) will split on white space just as split with no arguments

does, but leading white space does NOT produce a null �rst �eld. Thus, split(� �) can

be used to emulate awk 's default behavior, whereas split(/ /) will give you as many null

initial �elds as there are leading spaces.

Example:

open(passwd, �/etc/passwd�);

while (<passwd>) f

($login, $passwd, $uid, $gid, $gcos, $home, $shell) = split(/ : /);

. . .

g

(Note that $shell above will still have a newline on it. See chop().) See also join.

sprintf(FORMAT,LIST)

Returns a string formatted by the usual printf conventions. The * character is not sup-

ported.

sqrt(EXPR)

sqrt EXPR

Return the square root of EXPR. If EXPR is omitted, returns square root of $.

srand(EXPR)

srand EXPR

Sets the random number seed for the rand operator. If EXPR is omitted, does

srand(time).

stat(FILEHANDLE)

stat FILEHANDLE

stat(EXPR)

stat SCALARVARIABLE

Returns a 13-element array giving the statistics for a �le, either the �le opened via FILE-

HANDLE, or named by EXPR. Returns a null list if the stat fails. Typically used as

follows:

($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size,

$atime,$mtime,$ctime,$blksize,$blocks)

= stat($�lename);

If stat is passed the special �lehandle consisting of an underline, no stat is done, but the

current contents of the stat structure from the last stat or �letest are returned. Exam-

ple:

Release 4.0 Patchlevel 36 50

PERL(1) PERL(1)

splice(ARRAY,OFFSET,LENGTH,LIST)

splice(ARRAY,OFFSET,LENGTH)

splice(ARRAY,OFFSET)

Removes the elements designated by OFFSET and LENGTH from an array, and replaces

them with the elements of LIST, if any. Returns the elements removed from the array.

The array grows or shrinks as necessary. If LENGTH is omitted, removes everything

from OFFSET onward. The following equivalencies hold (assuming $[== 0):

push(@a,$x,$y) splice(@a,$#a+1,0,$x,$y)

pop(@a) splice(@a,-1)

shift(@a) splice(@a,0,1)

unshift(@a,$x,$y) splice(@a,0,0,$x,$y)

$a[$x] = $y splice(@a,$x,1,$y);

Example, assuming array lengths are passed before arrays:

sub aeq f # compare two array values

local(@a) = splice(@ ,0,shift);

local(@b) = splice(@ ,0,shift);

return 0 unless @a == @b; # same len?

while (@a) f

return 0 if pop(@a) ne pop(@b);

g

return 1;

g

if (&aeq($len,@foo[1..$len],0+@bar,@bar)) f ... g

split(/PATTERN/,EXPR,LIMIT)

split(/PATTERN/,EXPR)

split(/PATTERN/)

split Splits a string into an array of strings, and returns it. (If not in an array context,

returns the number of �elds found and splits into the @ array. (In an array context,

you can force the split into @ by using ?? as the pattern delimiters, but it still returns

the array value.)) If EXPR is omitted, splits the $ string. If PATTERN is also omit-

ted, splits on whitespace (/[ntnn]+/). Anything matching PATTERN is taken to be a

delimiter separating the �elds. (Note that the delimiter may be longer than one charac-

ter.) If LIMIT is speci�ed, splits into no more than that many �elds (though it may

split into fewer). If LIMIT is unspeci�ed, trailing null �elds are stripped (which poten-

tial users of pop() would do well to remember). A pattern matching the null string (not

to be confused with a null pattern //, which is just one member of the set of patterns

matching a null string) will split the value of EXPR into separate characters at each

point it matches that way. For example:

print join(�:�, split(/ */, �hi there�));

produces the output `h:i:t:h:e:r:e'.

The LIMIT parameter can be used to partially split a line

($login, $passwd, $remainder) = split(/ : / , $, 3);

(When assigning to a list, if LIMIT is omitted, perl supplies a LIMIT one larger than the

number of variables in the list, to avoid unnecessary work. For the list above LIMIT

Release 4.0 Patchlevel 36 49

PERL(1) PERL(1)

sort(SUBROUTINE LIST)

sort(LIST)

sort SUBROUTINE LIST

sort BLOCK LIST

sort LIST

Sorts the LIST and returns the sorted array value. Nonexistent values of arrays are

stripped out. If SUBROUTINE or BLOCK is omitted, sorts in standard string compari-

son order. If SUBROUTINE is speci�ed, gives the name of a subroutine that returns an

integer less than, equal to, or greater than 0, depending on how the elements of the array

are to be ordered. (The <=> and cmp operators are extremely useful in such routines.)

SUBROUTINE may be a scalar variable name, in which case the value provides the

name of the subroutine to use. In place of a SUBROUTINE name, you can provide a

BLOCK as an anonymous, in-line sort subroutine.

In the interests of e�ciency the normal calling code for subroutines is bypassed, with the

following e�ects: the subroutine may not be a recursive subroutine, and the two elements

to be compared are passed into the subroutine not via @ but as $a and $b (see example

below). They are passed by reference so don't modify $a and $b.

Examples:

sort lexically

@articles = sort @�les;

same thing, but with explicit sort routine

@articles = sort f$a cmp $bg @�les;

same thing in reversed order

@articles = sort f$b cmp $ag @�les;

sort numerically ascending

@articles = sort f$a <=> $bg @�les;

sort numerically descending

@articles = sort f$b <=> $ag @�les;

sort using explicit subroutine name

sub byage f

$agef$ag <=> $agef$bg; # presuming integers

g

@sortedclass = sort byage @class;

sub reverse f $b cmp $a; g

@harry = (�dog�,�cat�,�x�,�Cain�,�Abel�);

@george = (�gone�,�chased�,�yz�,�Punished�,�Axed�);

print sort @harry;

prints AbelCaincatdogx

print sort reverse @harry;

prints xdogcatCainAbel

print sort @george, �to�, @harry;

prints AbelAxedCainPunishedcatchaseddoggonetoxyz

Release 4.0 Patchlevel 36 48

PERL(1) PERL(1)

shift(ARRAY)

shift ARRAY

shift Shifts the �rst value of the array o� and returns it, shortening the array by 1 and mov-

ing everything down. If there are no elements in the array, returns the unde�ned value.

If ARRAY is omitted, shifts the @ARGV array in the main program, and the @ array

in subroutines. (This is determined lexically.) See also unshift(), push() and pop().

Shift() and unshift() do the same thing to the left end of an array that push() and pop()

do to the right end.

shmctl(ID,CMD,ARG)

Calls the System V IPC function shmctl. If CMD is &IPC STAT, then ARG must be a

variable which will hold the returned shmid ds structure. Returns like ioctl: the unde-

�ned value for error, "0 but true" for zero, or the actual return value otherwise.

shmget(KEY,SIZE,FLAGS)

Calls the System V IPC function shmget. Returns the shared memory segment id, or

the unde�ned value if there is an error.

shmread(ID,VAR,POS,SIZE)

shmwrite(ID,STRING,POS,SIZE)

Reads or writes the System V shared memory segment ID starting at position POS for

size SIZE by attaching to it, copying in/out, and detaching from it. When reading, VAR

must be a variable which will hold the data read. When writing, if STRING is too long,

only SIZE bytes are used; if STRING is too short, nulls are written to �ll out SIZE

bytes. Return true if successful, or false if there is an error.

shutdown(SOCKET,HOW)

Shuts down a socket connection in the manner indicated by HOW, which has the same

interpretation as in the system call of the same name.

sin(EXPR)

sin EXPR

Returns the sine of EXPR (expressed in radians). If EXPR is omitted, returns sine of

$.

sleep(EXPR)

sleep EXPR

sleep Causes the script to sleep for EXPR seconds, or forever if no EXPR. May be interrupted

by sending the process a SIGALRM. Returns the number of seconds actually slept. You

probably cannot mix alarm() and sleep() calls, since sleep() is often implemented using

alarm().

socket(SOCKET,DOMAIN,TYPE,PROTOCOL)

Opens a socket of the speci�ed kind and attaches it to �lehandle SOCKET. DOMAIN,

TYPE and PROTOCOL are speci�ed the same as for the system call of the same name.

You may need to run h2ph on sys/socket.h to get the proper values handy in a perl

library �le. Return true if successful. See the example in the section on Interprocess

Communication.

socketpair(SOCKET1,SOCKET2,DOMAIN,TYPE,PROTOCOL)

Creates an unnamed pair of sockets in the speci�ed domain, of the speci�ed type.

DOMAIN, TYPE and PROTOCOL are speci�ed the same as for the system call of the

same name. If unimplemented, yields a fatal error. Return true if successful.

Release 4.0 Patchlevel 36 47

PERL(1) PERL(1)

$bits;

g

$rin = &fhbits('STDIN TTY SOCK');

The usual idiom is:

($nfound,$timeleft) =

select($rout=$rin, $wout=$win, $eout=$ein, $timeout);

or to block until something becomes ready:

$nfound = select($rout=$rin, $wout=$win, $eout=$ein, undef);

Any of the bitmasks can also be undef. The timeout, if speci�ed, is in seconds, which

may be fractional. NOTE: not all implementations are capable of returning the

$timeleft. If not, they always return $timeleft equal to the supplied $timeout.

semctl(ID,SEMNUM,CMD,ARG)

Calls the System V IPC function semctl. If CMD is &IPC STAT or &GETALL, then

ARG must be a variable which will hold the returned semid ds structure or semaphore

value array. Returns like ioctl: the unde�ned value for error, "0 but true" for zero, or

the actual return value otherwise.

semget(KEY,NSEMS,SIZE,FLAGS)

Calls the System V IPC function semget. Returns the semaphore id, or the unde�ned

value if there is an error.

semop(KEY,OPSTRING)

Calls the System V IPC function semop to perform semaphore operations such as signal-

ing and waiting. OPSTRING must be a packed array of semop structures. Each semop

structure can be generated with 'pack("sss", $semnum, $semop, $semag)'. The number

of semaphore operations is implied by the length of OPSTRING. Returns true if suc-

cessful, or false if there is an error. As an example, the following code waits on

semaphore $semnum of semaphore id $semid:

$semop = pack("sss", $semnum, -1, 0);

die "Semaphore trouble: $!nn" unless semop($semid, $semop);

To signal the semaphore, replace "-1" with "1".

send(SOCKET,MSG,FLAGS,TO)

send(SOCKET,MSG,FLAGS)

Sends a message on a socket. Takes the same ags as the system call of the same name.

On unconnected sockets you must specify a destination to send TO. Returns the number

of characters sent, or the unde�ned value if there is an error.

setpgrp(PID,PGRP)

Sets the current process group for the speci�ed PID, 0 for the current process. Will pro-

duce a fatal error if used on a machine that doesn't implement setpgrp(2).

setpriority(WHICH,WHO,PRIORITY)

Sets the current priority for a process, a process group, or a user. (See setpriority(2).)

Will produce a fatal error if used on a machine that doesn't implement setpriority(2).

setsockopt(SOCKET,LEVEL,OPTNAME,OPTVAL)

Sets the socket option requested. Returns unde�ned if there is an error. OPTVAL may

be speci�ed as undef if you don't want to pass an argument.

Release 4.0 Patchlevel 36 46

PERL(1) PERL(1)

$ = �abc123xyz�;

s/nd+/$&*2/e; # yields `abc246xyz'

s/nd+/sprintf("%5d",$&)/e; # yields `abc 246xyz'

s/nw/$& x 2/eg; # yields `aabbcc 224466xxyyzz'

s/ ([^]*) * ([^]*) / $2 $1/; # reverse 1st two �elds

(Note the use of $ instead of n in the last example. See section on regular expressions.)

scalar(EXPR)

Forces EXPR to be interpreted in a scalar context and returns the value of EXPR.

seek(FILEHANDLE,POSITION,WHENCE)

Randomly positions the �le pointer for FILEHANDLE, just like the fseek() call of stdio.

FILEHANDLE may be an expression whose value gives the name of the �lehandle.

Returns 1 upon success, 0 otherwise.

seekdir(DIRHANDLE,POS)

Sets the current position for the readdir() routine on DIRHANDLE. POS must be a

value returned by telldir(). Has the same caveats about possible directory compaction as

the corresponding system library routine.

select(FILEHANDLE)

select Returns the currently selected �lehandle. Sets the current default �lehandle for output,

if FILEHANDLE is supplied. This has two e�ects: �rst, a write or a print without a �le-

handle will default to this FILEHANDLE. Second, references to variables related to out-

put will refer to this output channel. For example, if you have to set the top of form for-

mat for more than one output channel, you might do the following:

select(REPORT1);

$^ = �report1 top�;

select(REPORT2);

$^ = �report2 top�;

FILEHANDLE may be an expression whose value gives the name of the actual �lehan-

dle. Thus:

$oldfh = select(STDERR); $j = 1; select($oldfh);

select(RBITS,WBITS,EBITS,TIMEOUT)

This calls the select system call with the bitmasks speci�ed, which can be constructed

using �leno() and vec(), along these lines:

$rin = $win = $ein = '';

vec($rin,�leno(STDIN),1) = 1;

vec($win,�leno(STDOUT),1) = 1;

$ein = $rin j $win;

If you want to select on many �lehandles you might wish to write a subroutine:

sub fhbits f

local(@fhlist) = split(' ',$ [0]);

local($bits);

for (@fhlist) f

vec($bits,�leno($),1) = 1;

g

Release 4.0 Patchlevel 36 45

PERL(1) PERL(1)

return LIST

Returns from a subroutine with the value speci�ed. (Note that a subroutine can auto-

matically return the value of the last expression evaluated. That's the preferred

method|use of an explicit return is a bit slower.)

reverse(LIST)

reverse LIST

In an array context, returns an array value consisting of the elements of LIST in the

opposite order. In a scalar context, returns a string value consisting of the bytes of the

�rst element of LIST in the opposite order.

rewinddir(DIRHANDLE)

rewinddir DIRHANDLE

Sets the current position to the beginning of the directory for the readdir() routine on

DIRHANDLE.

rindex(STR,SUBSTR,POSITION)

rindex(STR,SUBSTR)

Works just like index except that it returns the position of the LAST occurrence of SUB-

STR in STR. If POSITION is speci�ed, returns the last occurrence at or before that

position.

rmdir(FILENAME)

rmdir FILENAME

Deletes the directory speci�ed by FILENAME if it is empty. If it succeeds it returns 1,

otherwise it returns 0 and sets $! (errno). If FILENAME is omitted, uses $.

s/PATTERN/REPLACEMENT/gieo

Searches a string for a pattern, and if found, replaces that pattern with the replacement

text and returns the number of substitutions made. Otherwise it returns false (0). The

`̀ g'' is optional, and if present, indicates that all occurrences of the pattern are to be

replaced. The `̀ i'' is also optional, and if present, indicates that matching is to be done

in a case-insensitive manner. The `̀ e'' is likewise optional, and if present, indicates that

the replacement string is to be evaluated as an expression rather than just as a double-

quoted string. Any non-alphanumeric delimiter may replace the slashes; if single quotes

are used, no interpretation is done on the replacement string (the e modi�er overrides

this, however); if backquotes are used, the replacement string is a command to execute

whose output will be used as the actual replacement text. If the PATTERN is delimited

by bracketing quotes, the REPLACEMENT has its own pair of quotes, which may or

may not be bracketing quotes, e.g. s(foo)(bar) or s<foo>/bar/. If no string is speci�ed

via the =~ or !~ operator, the $ string is searched and modi�ed. (The string speci�ed

with =~ must be a scalar variable, an array element, or an assignment to one of those,

i.e. an lvalue.) If the pattern contains a $ that looks like a variable rather than an end-

of-string test, the variable will be interpolated into the pattern at run-time. If you only

want the pattern compiled once the �rst time the variable is interpolated, add an `̀ o'' at

the end. If the PATTERN evaluates to a null string, the most recent successful regular

expression is used instead. See also the section on regular expressions. Examples:

s/ n bgreenn b/mauve/g; # don't change wintergreen

$path =~ sj /usr/binj /usr/local/binj;

s/Login: $foo/Login: $bar/; # run-time pattern

($foo = $bar) =~ s/bar/foo/;

Release 4.0 Patchlevel 36 44

PERL(1) PERL(1)

rename(OLDNAME,NEWNAME)

Changes the name of a �le. Returns 1 for success, 0 otherwise. Will not work across

�lesystem boundaries.

require(EXPR)

require EXPR

require Includes the library �le speci�ed by EXPR, or by $ if EXPR is not supplied. Has

semantics similar to the following subroutine:

sub require f

local($�lename) = @ ;

return 1 if $INCf$�lenameg;

local($real�lename,$result);

ITER: f

foreach $pre�x (@INC) f

$real�lename = "$pre�x/$�lename";

if (-f $real�lename) f

$result = do $real�lename;

last ITER;

g

g

die "Can't �nd $�lename in n@INC";

g

die $@ if $@;

die "$�lename did not return true value" unless $result;

$INCf$�lenameg = $real�lename;

$result;

g

Note that the �le will not be included twice under the same speci�ed name. The �le

must return true as the last statement to indicate successful execution of any initializa-

tion code, so it's customary to end such a �le with `̀ 1;'' unless you're sure it'll return true

otherwise.

reset(EXPR)

reset EXPR

reset Generally used in a continue block at the end of a loop to clear variables and reset ??

searches so that they work again. The expression is interpreted as a list of single charac-

ters (hyphens allowed for ranges). All variables and arrays beginning with one of those

letters are reset to their pristine state. If the expression is omitted, one-match searches

(?pattern?) are reset to match again. Only resets variables or searches in the current

package. Always returns 1. Examples:

reset �X�; # reset all X variables

reset �a�z�; # reset lower case variables

reset; # just reset ?? searches

Note: resetting `̀ A�Z'' is not recommended since you'll wipe out your ARGV and ENV

arrays.

The use of reset on dbm associative arrays does not change the dbm �le. (It does, how-

ever, ush any entries cached by perl, which may be useful if you are sharing the dbm

�le. Then again, maybe not.)

Release 4.0 Patchlevel 36 43

PERL(1) PERL(1)

rand(EXPR)

rand EXPR

rand Returns a random fractional number between 0 and the value of EXPR. (EXPR should

be positive.) If EXPR is omitted, returns a value between 0 and 1. See also srand().

read(FILEHANDLE,SCALAR,LENGTH,OFFSET)

read(FILEHANDLE,SCALAR,LENGTH)

Attempts to read LENGTH bytes of data into variable SCALAR from the speci�ed

FILEHANDLE. Returns the number of bytes actually read, or undef if there was an

error. SCALAR will be grown or shrunk to the length actually read. An OFFSET may

be speci�ed to place the read data at some other place than the beginning of the string.

This call is actually implemented in terms of stdio's fread call. To get a true read system

call, see sysread.

readdir(DIRHANDLE)

readdir DIRHANDLE

Returns the next directory entry for a directory opened by opendir(). If used in an array

context, returns all the rest of the entries in the directory. If there are no more entries,

returns an unde�ned value in a scalar context or a null list in an array context.

readlink(EXPR)

readlink EXPR

Returns the value of a symbolic link, if symbolic links are implemented. If not, gives a

fatal error. If there is some system error, returns the unde�ned value and sets $! (errno).

If EXPR is omitted, uses $.

recv(SOCKET,SCALAR,LEN,FLAGS)

Receives a message on a socket. Attempts to receive LENGTH bytes of data into vari-

able SCALAR from the speci�ed SOCKET �lehandle. Returns the address of the

sender, or the unde�ned value if there's an error. SCALAR will be grown or shrunk to

the length actually read. Takes the same ags as the system call of the same name.

redo LABEL

redo The redo command restarts the loop block without evaluating the conditional again.

The continue block, if any, is not executed. If the LABEL is omitted, the command

refers to the innermost enclosing loop. This command is normally used by programs

that want to lie to themselves about what was just input:

a simpleminded Pascal comment stripper

(warning: assumes no f or g in strings)

line: while (<STDIN>) f

while (sj (f.*g.*)f.*gj$1 j) fg

sjf.*gj j;

if (sjf.*j j) f

$front = $;

while (<STDIN>) f

if (/ g/) f # end of comment?

sj^j$frontfj;

redo line;

g

g

g

print;

g

Release 4.0 Patchlevel 36 42

PERL(1) PERL(1)

print(FILEHANDLE LIST)

print(LIST)

print FILEHANDLE LIST

print LIST

print Prints a string or a comma-separated list of strings. Returns non-zero if successful.

FILEHANDLE may be a scalar variable name, in which case the variable contains the

name of the �lehandle, thus introducing one level of indirection. (NOTE: If FILEHAN-

DLE is a variable and the next token is a term, it may be misinterpreted as an operator

unless you interpose a + or put parens around the arguments.) If FILEHANDLE is

omitted, prints by default to standard output (or to the last selected output

channel|see select()). If LIST is also omitted, prints $ to STDOUT . To set the

default output channel to something other than STDOUT use the select operation. Note

that, because print takes a LIST, anything in the LIST is evaluated in an array context,

and any subroutine that you call will have one or more of its expressions evaluated in an

array context. Also be careful not to follow the print keyword with a left parenthesis

unless you want the corresponding right parenthesis to terminate the arguments to the

print|interpose a + or put parens around all the arguments.

printf(FILEHANDLE LIST)

printf(LIST)

printf FILEHANDLE LIST

printf LIST

Equivalent to a `̀ print FILEHANDLE sprintf(LIST)''.

push(ARRAY,LIST)

Treats ARRAY (@ is optional) as a stack, and pushes the values of LIST onto the end of

ARRAY. The length of ARRAY increases by the length of LIST. Has the same e�ect as

for $value (LIST) f

$ARRAY[++$#ARRAY] = $value;

g

but is more e�cient.

q/STRING/

qq/STRING/

qx/STRING/

These are not really functions, but simply syntactic sugar to let you avoid putting too

many backslashes into quoted strings. The q operator is a generalized single quote, and

the qq operator a generalized double quote. The qx operator is a generalized backquote.

Any non-alphanumeric delimiter can be used in place of /, including newline. If the

delimiter is an opening bracket or parenthesis, the �nal delimiter will be the correspond-

ing closing bracket or parenthesis. (Embedded occurrences of the closing bracket need to

be backslashed as usual.) Examples:

$foo = q!I said, "You said, �She said it.�"!;

$bar = q(�This is it.�);

$today = qxf date g;

$.= qq

*** The previous line contains the naughty word "$&".nn

if /(ibmjapplejawk)/; # :-)

Release 4.0 Patchlevel 36 41

PERL(1) PERL(1)

numbers (oats and doubles) are in the native machine format only; due to the multiplic-

ity of oating formats around, and the lack of a standard `̀ network'' representation, no

facility for interchange has been made. This means that packed oating point data writ-

ten on one machine may not be readable on another - even if both use IEEE oating

point arithmetic (as the endian-ness of the memory representation is not part of the

IEEE spec). Note that perl uses doubles internally for all numeric calculation, and con-

verting from double -> oat -> double will lose precision (i.e. unpack("f", pack("f",

$foo)) will not in general equal $foo).

Examples:

$foo = pack("cccc",65,66,67,68);

foo eq "ABCD"

$foo = pack("c4",65,66,67,68);

same thing

$foo = pack("ccxxcc",65,66,67,68);

foo eq "ABn0n0CD"

$foo = pack("s2",1,2);

"n1n0n2n0" on little-endian

"n0n1n0n2" on big-endian

$foo = pack("a4","abcd","x","y","z");

"abcd"

$foo = pack("aaaa","abcd","x","y","z");

"axyz"

$foo = pack("a14","abcdefg");

"abcdefgn0n0n0n0n0n0n0"

$foo = pack("i9pl", gmtime);

a real struct tm (on my system anyway)

sub bintodec f

unpack("N", pack("B32", substr("0" x 32 . shift, -32)));

g

The same template may generally also be used in the unpack function.

pipe(READHANDLE,WRITEHANDLE)

Opens a pair of connected pipes like the corresponding system call. Note that if you set

up a loop of piped processes, deadlock can occur unless you are very careful. In addi-

tion, note that perl's pipes use stdio bu�ering, so you may need to set $j to ush your

WRITEHANDLE after each command, depending on the application. [Requires version

3.0 patchlevel 9.]

pop(ARRAY)

pop ARRAY

Pops and returns the last value of the array, shortening the array by 1. Has the same

e�ect as

$tmp = $ARRAY[$#ARRAY��];

If there are no elements in the array, returns the unde�ned value.

Release 4.0 Patchlevel 36 40

PERL(1) PERL(1)

The �lename that is passed to open will have leading and trailing whitespace deleted. In

order to open a �le with arbitrary weird characters in it, it's necessary to protect any

leading and trailing whitespace thusly:

$�le =~ s#^(ns)#./$1#;

open(FOO, "< $�len0");

opendir(DIRHANDLE,EXPR)

Opens a directory named EXPR for processing by readdir(), telldir(), seekdir(), rewind-

dir() and closedir(). Returns true if successful. DIRHANDLEs have their own names-

pace separate from FILEHANDLEs.

ord(EXPR)

ord EXPR

Returns the numeric ascii value of the �rst character of EXPR. If EXPR is omitted,

uses $.

pack(TEMPLATE,LIST)

Takes an array or list of values and packs it into a binary structure, returning the string

containing the structure. The TEMPLATE is a sequence of characters that give the

order and type of values, as follows:

A An ascii string, will be space padded.

a An ascii string, will be null padded.

c A signed char value.

C An unsigned char value.

s A signed short value.

S An unsigned short value.

i A signed integer value.

I An unsigned integer value.

l A signed long value.

L An unsigned long value.

n A short in `̀ network'' order.

N A long in `̀ network'' order.

f A single-precision oat in the native format.

d A double-precision oat in the native format.

p A pointer to a string.

v A short in `̀ VAX'' (little-endian) order.

V A long in `̀ VAX'' (little-endian) order.

x A null byte.

X Back up a byte.

@ Null �ll to absolute position.

u A uuencoded string.

b A bit string (ascending bit order, like vec()).

B A bit string (descending bit order).

h A hex string (low nybble �rst).

H A hex string (high nybble �rst).

Each letter may optionally be followed by a number which gives a repeat count. With all

types except "a", "A", "b", "B", "h" and "H", the pack function will gobble up that

many values from the LIST. A * for the repeat count means to use however many items

are left. The "a" and "A" types gobble just one value, but pack it as a string of length

count, padding with nulls or spaces as necessary. (When unpacking, "A" strips trailing

spaces and nulls, but "a" does not.) Likewise, the "b" and "B" �elds pack a string that

many bits long. The "h" and "H" �elds pack a string that many nybbles long. Real

Release 4.0 Patchlevel 36 39

PERL(1) PERL(1)

g

. . . # whatever

g

g

You may also, in the Bourne shell tradition, specify an EXPR beginning with `̀>&'', in

which case the rest of the string is interpreted as the name of a �lehandle (or �le descrip-

tor, if numeric) which is to be duped and opened. You may use & after >, >>, <, +>,

+>> and +<. The mode you specify should match the mode of the original �lehandle.

Here is a script that saves, redirects, and restores STDOUT and STDERR:

#!/usr/bin/perl

open(SAVEOUT, ">&STDOUT");

open(SAVEERR, ">&STDERR");

open(STDOUT, ">foo.out") jj die "Can't redirect stdout";

open(STDERR, ">&STDOUT") jj die "Can't dup stdout";

select(STDERR); $j = 1; # make unbu�ered

select(STDOUT); $j = 1; # make unbu�ered

print STDOUT "stdout 1nn"; # this works for

print STDERR "stderr 1nn"; # subprocesses too

close(STDOUT);

close(STDERR);

open(STDOUT, ">&SAVEOUT");

open(STDERR, ">&SAVEERR");

print STDOUT "stdout 2nn";

print STDERR "stderr 2nn";

If you open a pipe on the command `̀�'', i.e. either `̀ j�'' or `̀�j'', then there is an

implicit fork done, and the return value of open is the pid of the child within the parent

process, and 0 within the child process. (Use de�ned($pid) to determine if the open was

successful.) The �lehandle behaves normally for the parent, but i/o to that �lehandle is

piped from/to the STDOUT/STDIN of the child process. In the child process the �le-

handle isn't opened| i/o happens from/to the new STDOUT or STDIN . Typically this

is used like the normal piped open when you want to exercise more control over just how

the pipe command gets executed, such as when you are running setuid, and don't want

to have to scan shell commands for metacharacters. The following pairs are more or less

equivalent:

open(FOO, "jtr �[a�z]� �[A�Z]�");

open(FOO, "j�") jj exec �tr�, �[a�z]�, �[A�Z]�;

open(FOO, "cat �n '$�le'j");

open(FOO, "�j") jj exec �cat�, ��n�, $�le;

Explicitly closing any piped �lehandle causes the parent process to wait for the child to

�nish, and returns the status value in $?. Note: on any operation which may do a fork,

unushed bu�ers remain unushed in both processes, which means you may need to set

$j to avoid duplicate output.

Release 4.0 Patchlevel 36 38

PERL(1) PERL(1)

oct(EXPR)

oct EXPR

Returns the decimal value of EXPR interpreted as an octal string. (If EXPR happens to

start o� with 0x, interprets it as a hex string instead.) The following will handle deci-

mal, octal and hex in the standard notation:

$val = oct($val) if $val =~ /^0/;

If EXPR is omitted, uses $.

open(FILEHANDLE,EXPR)

open(FILEHANDLE)

open FILEHANDLE

Opens the �le whose �lename is given by EXPR, and associates it with FILEHANDLE.

If FILEHANDLE is an expression, its value is used as the name of the real �lehandle

wanted. If EXPR is omitted, the scalar variable of the same name as the FILEHANDLE

contains the �lename. If the �lename begins with `̀<'' or nothing, the �le is opened for

input. If the �lename begins with `̀>'', the �le is opened for output. If the �lename

begins with `̀>>'', the �le is opened for appending. (You can put a �+� in front of the

�>� or �<� to indicate that you want both read and write access to the �le.) If the �le-

name begins with `̀ j'', the �lename is interpreted as a command to which output is to be

piped, and if the �lename ends with a `̀ j'', the �lename is interpreted as command which

pipes input to us. (You may not have a command that pipes both in and out.) Opening

��� opens STDIN and opening �>�� opens STDOUT . Open returns non-zero upon

success, the unde�ned value otherwise. If the open involved a pipe, the return value hap-

pens to be the pid of the subprocess. Examples:

$article = 100;

open article jj die "Can't �nd article $article: $!nn";

while (<article>) f . . .

open(LOG, �>>/usr/spool/news/twitlog�); # (log is reserved)

open(article, "caesar <$article j"); # decrypt article

open(extract, "jsort >/tmp/Tmp$$"); # $$ is our process#

process argument list of �les along with any includes

foreach $�le (@ARGV) f

do process($�le, �fh00�); # no pun intended

g

sub process f

local($�lename, $input) = @ ;

$input++; # this is a string increment

unless (open($input, $�lename)) f

print STDERR "Can't open $�lename: $!nn";

return;

g

while (<$input>) f # note the use of indirection

if (/^#include "(.*)"/) f

do process($1, $input);

next;

Release 4.0 Patchlevel 36 37

PERL(1) PERL(1)

actually get away with in-place modi�cations via substr() that do not change the length

of the entire string. In general, however, you should be using s///g for such modi�ca-

tions.) Examples:

array context

($one,$�ve,$�fteen) = (�uptime� =~ /(nd+n.nd+)/g);

scalar context

$/ = ""; $* = 1;

while ($paragraph = <>) f

while ($paragraph =~ /[a-z][�")]*[.!?]+[�")]*ns/g) f

$sentences++;

g

g

print "$sentencesnn";

mkdir(FILENAME,MODE)

Creates the directory speci�ed by FILENAME, with permissions speci�ed by MODE (as

modi�ed by umask). If it succeeds it returns 1, otherwise it returns 0 and sets $! (errno).

msgctl(ID,CMD,ARG)

Calls the System V IPC function msgctl. If CMD is &IPC STAT, then ARG must be a

variable which will hold the returned msqid ds structure. Returns like ioctl: the unde-

�ned value for error, "0 but true" for zero, or the actual return value otherwise.

msgget(KEY,FLAGS)

Calls the System V IPC function msgget. Returns the message queue id, or the unde-

�ned value if there is an error.

msgsnd(ID,MSG,FLAGS)

Calls the System V IPC function msgsnd to send the message MSG to the message

queue ID. MSG must begin with the long integer message type, which may be created

with pack("L", $type). Returns true if successful, or false if there is an error.

msgrcv(ID,VAR,SIZE,TYPE,FLAGS)

Calls the System V IPC function msgrcv to receive a message from message queue ID

into variable VAR with a maximum message size of SIZE. Note that if a message is

received, the message type will be the �rst thing in VAR, and the maximum length of

VAR is SIZE plus the size of the message type. Returns true if successful, or false if

there is an error.

next LABEL

next The next command is like the continue statement in C; it starts the next iteration of the

loop:

line: while (<STDIN>) f

next line if / ^#/; # discard comments

. . .

g

Note that if there were a continue block on the above, it would get executed even on dis-

carded lines. If the LABEL is omitted, the command refers to the innermost enclosing

loop.

Release 4.0 Patchlevel 36 36

PERL(1) PERL(1)

normal stat is done.

m/PATTERN/gio

/PATTERN/gio

Searches a string for a pattern match, and returns true (1) or false (��). If no string is

speci�ed via the =~ or !~ operator, the $ string is searched. (The string speci�ed with

=~ need not be an lvalue|it may be the result of an expression evaluation, but remem-

ber the =~ binds rather tightly.) See also the section on regular expressions.

If / is the delimiter then the initial `m' is optional. With the `m' you can use any pair of

non-alphanumeric characters as delimiters. This is particularly useful for matching Unix

path names that contain `/'. If the �nal delimiter is followed by the optional letter `i',

the matching is done in a case-insensitive manner. PATTERN may contain references to

scalar variables, which will be interpolated (and the pattern recompiled) every time the

pattern search is evaluated. (Note that $) and $j may not be interpolated because they

look like end-of-string tests.) If you want such a pattern to be compiled only once, add

an `̀ o'' after the trailing delimiter. This avoids expensive run-time recompilations, and is

useful when the value you are interpolating won't change over the life of the script. If

the PATTERN evaluates to a null string, the most recent successful regular expression is

used instead.

If used in a context that requires an array value, a pattern match returns an array con-

sisting of the subexpressions matched by the parentheses in the pattern, i.e. ($1, $2,

$3. . .). It does NOT actually set $1, $2, etc. in this case, nor does it set $+, $`, $& or $'.

If the match fails, a null array is returned. If the match succeeds, but there were no

parentheses, an array value of (1) is returned.

Examples:

open(tty, �/dev/tty�);

<tty> =~ / ^y /i && do foo(); # do foo if desired

if (/Version: * ([0�9.]*) /) f $version = $1; g

next if m#^/usr/spool/uucp#;

poor man's grep

$arg = shift;

while (<>) f

print if /$arg/o; # compile only once

g

if (($F1, $F2, $Etc) = ($foo =~ /^(nS+)ns+(nS+)ns*(.*)/))

This last example splits $foo into the �rst two words and the remainder of the line, and

assigns those three �elds to $F1, $F2 and $Etc. The conditional is true if any variables

were assigned, i.e. if the pattern matched.

The `̀ g'' modi�er speci�es global pattern matching|that is, matching as many times as

possible within the string. How it behaves depends on the context. In an array context,

it returns a list of all the substrings matched by all the parentheses in the regular expres-

sion. If there are no parentheses, it returns a list of all the matched strings, as if there

were parentheses around the whole pattern. In a scalar context, it iterates through the

string, returning TRUE each time it matches, and FALSE when it eventually runs out of

matches. (In other words, it remembers where it left o� last time and restarts the search

at that point.) It presumes that you have not modi�ed the string since the last match.

Modifying the string between matches may result in unde�ned behavior. (You can

Release 4.0 Patchlevel 36 35

PERL(1) PERL(1)

sub RANGEVAL f

local($min, $max, $thunk) = @ ;

local($result) = ��;

local($i);

Presumably $thunk makes reference to $i

for ($i = $min; $i < $max; $i++) f

$result .= eval $thunk;

g

$result;

g

if ($sw eq �-v�) f

init local array with global array

local(@ARGV) = @ARGV;

unshift(@ARGV,�echo�);

system @ARGV;

g

@ARGV restored

temporarily add to digits associative array

if ($base12) f

(NOTE: not claiming this is e�cient!)

local(%digits) = (%digits,'t',10,'e',11);

do parse num();

g

Note that local() is a run-time command, and so gets executed every time through a

loop, using up more stack storage each time until it's all released at once when the loop

is exited.

localtime(EXPR)

localtime EXPR

Converts a time as returned by the time function to a 9-element array with the time ana-

lyzed for the local timezone. Typically used as follows:

($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = localtime(time);

All array elements are numeric, and come straight out of a struct tm. In particular this

means that $mon has the range 0. .11 and $wday has the range 0. .6. If EXPR is omit-

ted, does localtime(time).

log(EXPR)

log EXPR

Returns logarithm (base e) of EXPR. If EXPR is omitted, returns log of $.

lstat(FILEHANDLE)

lstat FILEHANDLE

lstat(EXPR)

lstat SCALARVARIABLE

Does the same thing as the stat() function, but stats a symbolic link instead of the �le

the symbolic link points to. If symbolic links are unimplemented on your system, a

Release 4.0 Patchlevel 36 34

PERL(1) PERL(1)

kill(LIST)

kill LIST

Sends a signal to a list of processes. The �rst element of the list must be the signal to

send. Returns the number of processes successfully signaled.

$cnt = kill 1, $child1, $child2;

kill 9, @goners;

If the signal is negative, kills process groups instead of processes. (On System V, a nega-

tive process number will also kill process groups, but that's not portable.) You may use

a signal name in quotes.

last LABEL

last The last command is like the break statement in C (as used in loops); it immediately

exits the loop in question. If the LABEL is omitted, the command refers to the inner-

most enclosing loop. The continue block, if any, is not executed:

line: while (<STDIN>) f

last line if / ^$/;# exit when done with header

. . .

g

length(EXPR)

length EXPR

Returns the length in characters of the value of EXPR. If EXPR is omitted, returns

length of $.

link(OLDFILE,NEWFILE)

Creates a new �lename linked to the old �lename. Returns 1 for success, 0 otherwise.

listen(SOCKET,QUEUESIZE)

Does the same thing that the listen system call does. Returns true if it succeeded, false

otherwise. See example in section on Interprocess Communication.

local(LIST)

Declares the listed variables to be local to the enclosing block, subroutine, eval or `̀ do''.

All the listed elements must be legal lvalues. This operator works by saving the current

values of those variables in LIST on a hidden stack and restoring them upon exiting the

block, subroutine or eval. This means that called subroutines can also reference the local

variable, but not the global one. The LIST may be assigned to if desired, which allows

you to initialize your local variables. (If no initializer is given for a particular variable, it

is created with an unde�ned value.) Commonly this is used to name the parameters to a

subroutine. Examples:

Release 4.0 Patchlevel 36 33

PERL(1) PERL(1)

require 'ioctl.ph';

$sgttyb t = "ccccs"; # 4 chars and a short

if (ioctl(STDIN,$TIOCGETP,$sgttyb)) f

@ary = unpack($sgttyb t,$sgttyb);

$ary[2] = 127;

$sgttyb = pack($sgttyb t,@ary);

ioctl(STDIN,$TIOCSETP,$sgttyb)

jj die "Can't ioctl: $!";

g

The return value of ioctl (and fcntl) is as follows:

if OS returns: perl returns:

-1 unde�ned value

0 string "0 but true"

anything else that number

Thus perl returns true on success and false on failure, yet you can still easily determine

the actual value returned by the operating system:

($retval = ioctl(...)) jj ($retval = -1);

printf "System returned %dnn", $retval;

join(EXPR,LIST)

join(EXPR,ARRAY)

Joins the separate strings of LIST or ARRAY into a single string with �elds separated by

the value of EXPR, and returns the string. Example:

$ = join(�:�, $login,$passwd,$uid,$gid,$gcos,$home,$shell);

See split .

keys(ASSOC ARRAY)

keys ASSOC ARRAY

Returns a normal array consisting of all the keys of the named associative array. The

keys are returned in an apparently random order, but it is the same order as either the

values() or each() function produces (given that the associative array has not been modi-

�ed). Here is yet another way to print your environment:

@keys = keys %ENV;

@values = values %ENV;

while ($#keys >= 0) f

print pop(@keys), �=�, pop(@values), "nn";

g

or how about sorted by key:

foreach $key (sort(keys %ENV)) f

print $key, �=�, $ENVf$keyg, "nn";

g

Release 4.0 Patchlevel 36 32

PERL(1) PERL(1)

goto LABEL

Finds the statement labeled with LABEL and resumes execution there. Currently you

may only go to statements in the main body of the program that are not nested inside a

do fg construct. This statement is not implemented very e�ciently, and is here only to

make the sed-to-perl translator easier. I may change its semantics at any time, consis-

tent with support for translated sed scripts. Use it at your own risk. Better yet, don't

use it at all.

grep(EXPR,LIST)

Evaluates EXPR for each element of LIST (locally setting $ to each element) and

returns the array value consisting of those elements for which the expression evaluated to

true. In a scalar context, returns the number of times the expression was true.

@foo = grep(!/^#/, @bar); # weed out comments

Note that, since $ is a reference into the array value, it can be used to modify the ele-

ments of the array. While this is useful and supported, it can cause bizarre results if the

LIST is not a named array.

hex(EXPR)

hex EXPR

Returns the decimal value of EXPR interpreted as an hex string. (To interpret strings

that might start with 0 or 0x see oct().) If EXPR is omitted, uses $.

index(STR,SUBSTR,POSITION)

index(STR,SUBSTR)

Returns the position of the �rst occurrence of SUBSTR in STR at or after POSITION.

If POSITION is omitted, starts searching from the beginning of the string. The return

value is based at 0, or whatever you've set the $[variable to. If the substring is not

found, returns one less than the base, ordinarily �1.

int(EXPR)

int EXPR

Returns the integer portion of EXPR. If EXPR is omitted, uses $.

ioctl(FILEHANDLE,FUNCTION,SCALAR)

Implements the ioctl(2) function. You'll probably have to say

require "ioctl.ph"; # probably /usr/local/lib/perl/ioctl.ph

�rst to get the correct function de�nitions. If ioctl.ph doesn't exist or doesn't have the

correct de�nitions you'll have to roll your own, based on your C header �les such as

<sys/ioctl.h>. (There is a perl script called h2ph that comes with the perl kit which

may help you in this.) SCALAR will be read and/or written depending on the

FUNCTION|a pointer to the string value of SCALAR will be passed as the third argu-

ment of the actual ioctl call. (If SCALAR has no string value but does have a numeric

value, that value will be passed rather than a pointer to the string value. To guarantee

this to be true, add a 0 to the scalar before using it.) The pack() and unpack() functions

are useful for manipulating the values of structures used by ioctl(). The following exam-

ple sets the erase character to DEL.

Release 4.0 Patchlevel 36 31

PERL(1) PERL(1)

($name,$aliases,$addrtype,$net) = getnet. . .

($name,$aliases,$proto) = getproto. . .

($name,$aliases,$port,$proto) = getserv. . .

(If the entry doesn't exist you get a null list.)

Within a scalar context, you get the name, unless the function was a lookup by name, in

which case you get the other thing, whatever it is. (If the entry doesn't exist you get the

unde�ned value.) For example:

$uid = getpwnam

$name = getpwuid

$name = getpwent

$gid = getgrnam

$name = getgrgid

$name = getgrent

etc.

The $members value returned by getgr. . . is a space separated list of the login names of

the members of the group.

For the gethost. . . functions, if the h errno variable is supported in C, it will be returned

to you via $? if the function call fails. The @addrs value returned by a successful call is

a list of the raw addresses returned by the corresponding system library call. In the

Internet domain, each address is four bytes long and you can unpack it by saying some-

thing like:

($a,$b,$c,$d) = unpack('C4',$addr[0]);

getsockname(SOCKET)

Returns the packed sockaddr address of this end of the SOCKET connection.

An internet sockaddr

$sockaddr = 'S n a4 x8';

$mysockaddr = getsockname(S);

($family, $port, $myaddr) = unpack($sockaddr,$mysockaddr);

getsockopt(SOCKET,LEVEL,OPTNAME)

Returns the socket option requested, or unde�ned if there is an error.

gmtime(EXPR)

gmtime EXPR

Converts a time as returned by the time function to a 9-element array with the time ana-

lyzed for the Greenwich timezone. Typically used as follows:

($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = gmtime(time);

All array elements are numeric, and come straight out of a struct tm. In particular this

means that $mon has the range 0. .11 and $wday has the range 0. .6. If EXPR is omit-

ted, does gmtime(time).

Release 4.0 Patchlevel 36 30

PERL(1) PERL(1)

getppid Returns the process id of the parent process.

getpriority(WHICH,WHO)

Returns the current priority for a process, a process group, or a user. (See getprior-

ity(2).) Will produce a fatal error if used on a machine that doesn't implement getprior-

ity(2).

getpwnam(NAME)

getgrnam(NAME)

gethostbyname(NAME)

getnetbyname(NAME)

getprotobyname(NAME)

getpwuid(UID)

getgrgid(GID)

getservbyname(NAME,PROTO)

gethostbyaddr(ADDR,ADDRTYPE)

getnetbyaddr(ADDR,ADDRTYPE)

getprotobynumber(NUMBER)

getservbyport(PORT,PROTO)

getpwent

getgrent

gethostent

getnetent

getprotoent

getservent

setpwent

setgrent

sethostent(STAYOPEN)

setnetent(STAYOPEN)

setprotoent(STAYOPEN)

setservent(STAYOPEN)

endpwent

endgrent

endhostent

endnetent

endprotoent

endservent

These routines perform the same functions as their counterparts in the system library.

Within an array context, the return values from the various get routines are as follows:

($name,$passwd,$uid,$gid,

$quota,$comment,$gcos,$dir,$shell) = getpw. . .

($name,$passwd,$gid,$members) = getgr. . .

($name,$aliases,$addrtype,$length,@addrs) = gethost. . .

Release 4.0 Patchlevel 36 29

PERL(1) PERL(1)

$LOCK SH = 1;

$LOCK EX = 2;

$LOCK NB = 4;

$LOCK UN = 8;

sub lock f

ock(MBOX,$LOCK EX);

and, in case someone appended

while we were waiting...

seek(MBOX, 0, 2);

g

sub unlock f

ock(MBOX,$LOCK UN);

g

open(MBOX, ">>/usr/spool/mail/$ENVf'USER'g")

jj die "Can't open mailbox: $!";

do lock();

print MBOX $msg,"nnnn";

do unlock();

fork Does a fork() call. Returns the child pid to the parent process and 0 to the child pro-

cess. Note: unushed bu�ers remain unushed in both processes, which means you may

need to set $j to avoid duplicate output.

getc(FILEHANDLE)

getc FILEHANDLE

getc Returns the next character from the input �le attached to FILEHANDLE, or a null

string at EOF. If FILEHANDLE is omitted, reads from STDIN.

getlogin Returns the current login from /etc/utmp, if any. If null, use getpwuid.

$login = getlogin jj (getpwuid($<))[0] jj "Somebody";

getpeername(SOCKET)

Returns the packed sockaddr address of other end of the SOCKET connection.

An internet sockaddr

$sockaddr = 'S n a4 x8';

$hersockaddr = getpeername(S);

($family, $port, $heraddr) = unpack($sockaddr,$hersockaddr);

getpgrp(PID)

getpgrp PID

Returns the current process group for the speci�ed PID, 0 for the current process. Will

produce a fatal error if used on a machine that doesn't implement getpgrp(2). If EXPR

is omitted, returns process group of current process.

Release 4.0 Patchlevel 36 28

PERL(1) PERL(1)

exec "sort $out�le j uniq";

If you don't really want to execute the �rst argument, but want to lie to the program

you are executing about its own name, you can specify the program you actually want to

run by assigning that to a variable and putting the name of the variable in front of the

LIST without a comma. (This always forces interpretation of the LIST as a multi-valued

list, even if there is only a single scalar in the list.) Example:

$shell = '/bin/csh';

exec $shell '-sh'; # pretend it's a login shell

exit(EXPR)

exit EXPR

Evaluates EXPR and exits immediately with that value. Example:

$ans = <STDIN>;

exit 0 if $ans =~ /^[Xx] / ;

See also die. If EXPR is omitted, exits with 0 status.

exp(EXPR)

exp EXPR

Returns e to the power of EXPR. If EXPR is omitted, gives exp($).

fcntl(FILEHANDLE,FUNCTION,SCALAR)

Implements the fcntl(2) function. You'll probably have to say

require "fcntl.ph"; # probably /usr/local/lib/perl/fcntl.ph

�rst to get the correct function de�nitions. If fcntl.ph doesn't exist or doesn't have the

correct de�nitions you'll have to roll your own, based on your C header �les such as

<sys/fcntl.h>. (There is a perl script called h2ph that comes with the perl kit which

may help you in this.) Argument processing and value return works just like ioctl below.

Note that fcntl will produce a fatal error if used on a machine that doesn't implement

fcntl(2).

�leno(FILEHANDLE)

�leno FILEHANDLE

Returns the �le descriptor for a �lehandle. Useful for constructing bitmaps for select().

If FILEHANDLE is an expression, the value is taken as the name of the �lehandle.

ock(FILEHANDLE,OPERATION)

Calls ock(2) on FILEHANDLE. See manual page for ock(2) for de�nition of OPERA-

TION. Returns true for success, false on failure. Will produce a fatal error if used on a

machine that doesn't implement ock(2). Here's a mailbox appender for BSD systems.

Release 4.0 Patchlevel 36 27

PERL(1) PERL(1)

reset line numbering on each input �le

while (<>) f

print "$.nt$ ";

if (eof) f # Not eof().

close(ARGV);

g

g

eval(EXPR)

eval EXPR

eval BLOCK

EXPR is parsed and executed as if it were a little perl program. It is executed in the

context of the current perl program, so that any variable settings, subroutine or format

de�nitions remain afterwards. The value returned is the value of the last expression

evaluated, just as with subroutines. If there is a syntax error or runtime error, or a die

statement is executed, an unde�ned value is returned by eval, and $@ is set to the error

message. If there was no error, $@ is guaranteed to be a null string. If EXPR is omit-

ted, evaluates $. The �nal semicolon, if any, may be omitted from the expression.

Note that, since eval traps otherwise-fatal errors, it is useful for determining whether a

particular feature (such as dbmopen or symlink) is implemented. It is also Perl's excep-

tion trapping mechanism, where the die operator is used to raise exceptions.

If the code to be executed doesn't vary, you may use the eval-BLOCK form to trap run-

time errors without incurring the penalty of recompiling each time. The error, if any, is

still returned in $@. Evaluating a single-quoted string (as EXPR) has the same e�ect,

except that the eval-EXPR form reports syntax errors at run time via $@, whereas the

eval-BLOCK form reports syntax errors at compile time. The eval-EXPR form is opti-

mized to eval-BLOCK the �rst time it succeeds. (Since the replacement side of a substi-

tution is considered a single-quoted string when you use the e modi�er, the same opti-

mization occurs there.) Examples:

make divide-by-zero non-fatal

eval f $answer = $a / $b; g; warn $@ if $@;

optimized to same thing after �rst use

eval '$answer = $a / $b'; warn $@ if $@;

a compile-time error

eval f $answer = g;

a run-time error

eval '$answer ='; # sets $@

exec(LIST)

exec LIST

If there is more than one argument in LIST, or if LIST is an array with more than one

value, calls execvp() with the arguments in LIST. If there is only one scalar argument,

the argument is checked for shell metacharacters. If there are any, the entire argument is

passed to `̀ /bin/sh �c'' for parsing. If there are none, the argument is split into words

and passed directly to execvp(), which is more e�cient. Note: exec (and system) do not

ush your output bu�er, so you may need to set $j to avoid lost output. Examples:

exec �/bin/echo�, �Your arguments are: �, @ARGV;

Release 4.0 Patchlevel 36 26

PERL(1) PERL(1)

#!/usr/bin/perl

require 'getopt.pl';

require 'stat.pl';

%days = (

'Sun',1,

'Mon',2,

'Tue',3,

'Wed',4,

'Thu',5,

'Fri',6,

'Sat',7);

dump QUICKSTART if $ARGV[0] eq '-d';

QUICKSTART:

do Getopt('f');

each(ASSOC ARRAY)

each ASSOC ARRAY

Returns a 2 element array consisting of the key and value for the next value of an asso-

ciative array, so that you can iterate over it. Entries are returned in an apparently ran-

dom order. When the array is entirely read, a null array is returned (which when

assigned produces a FALSE (0) value). The next call to each() after that will start iter-

ating again. The iterator can be reset only by reading all the elements from the array.

You must not modify the array while iterating over it. There is a single iterator for each

associative array, shared by all each(), keys() and values() function calls in the program.

The following prints out your environment like the printenv program, only in a di�erent

order:

while (($key,$value) = each %ENV) f

print "$key=$valuenn";

g

See also keys() and values().

eof(FILEHANDLE)

eof()

eof Returns 1 if the next read on FILEHANDLE will return end of �le, or if FILEHANDLE

is not open. FILEHANDLE may be an expression whose value gives the real �lehandle

name. (Note that this function actually reads a character and then ungetc's it, so it is

not very useful in an interactive context.) An eof without an argument returns the eof

status for the last �le read. Empty parentheses () may be used to indicate the pseudo

�le formed of the �les listed on the command line, i.e. eof() is reasonable to use inside a

while (<>) loop to detect the end of only the last �le. Use eof(ARGV) or eof without

the parentheses to test EACH �le in a while (<>) loop. Examples:

insert dashes just before last line of last �le

while (<>) f

if (eof()) f

print "��������������nn";

g

print;

g

Release 4.0 Patchlevel 36 25

PERL(1) PERL(1)

do SUBROUTINE (LIST)

Executes a SUBROUTINE declared by a sub declaration, and returns the value of the

last expression evaluated in SUBROUTINE. If there is no subroutine by that name, pro-

duces a fatal error. (You may use the `̀ de�ned'' operator to determine if a subroutine

exists.) If you pass arrays as part of LIST you may wish to pass the length of the array

in front of each array. (See the section on subroutines later on.) The parentheses are

required to avoid confusion with the `̀ do EXPR'' form.

SUBROUTINE may also be a single scalar variable, in which case the name of the sub-

routine to execute is taken from the variable.

As an alternate (and preferred) form, you may call a subroutine by pre�xing the name

with an ampersand: &foo(@args). If you aren't passing any arguments, you don't have

to use parentheses. If you omit the parentheses, no @ array is passed to the subroutine.

The & form is also used to specify subroutines to the de�ned and undef operators:

if (de�ned &$var) f &$var($parm); undef &$var; g

do EXPR

Uses the value of EXPR as a �lename and executes the contents of the �le as a perl

script. Its primary use is to include subroutines from a perl subroutine library.

do �stat.pl�;

is just like

eval �cat stat.pl�;

except that it's more e�cient, more concise, keeps track of the current �lename for error

messages, and searches all the �I libraries if the �le isn't in the current directory (see

also the @INC array in Prede�ned Names). It's the same, however, in that it does

reparse the �le every time you call it, so if you are going to use the �le inside a loop you

might prefer to use �P and #include, at the expense of a little more startup time. (The

main problem with #include is that cpp doesn't grok # comments|a workaround is to

use `̀ ;#'' for standalone comments.) Note that the following are NOT equivalent:

do $foo;# eval a �le

do $foo(); # call a subroutine

Note that inclusion of library routines is better done with the `̀ require'' operator.

dump LABEL

This causes an immediate core dump. Primarily this is so that you can use the undump

program to turn your core dump into an executable binary after having initialized all

your variables at the beginning of the program. When the new binary is executed it will

begin by executing a "goto LABEL" (with all the restrictions that goto su�ers). Think

of it as a goto with an intervening core dump and reincarnation. If LABEL is omitted,

restarts the program from the top. WARNING: any �les opened at the time of the

dump will NOT be open any more when the program is reincarnated, with possible

resulting confusion on the part of perl. See also �u.

Example:

Release 4.0 Patchlevel 36 24

PERL(1) PERL(1)

print if de�ned $switchf'D'g;

print "$valnn" while de�ned($val = pop(@ary));

die "Can't readlink $sym: $!"

unless de�ned($value = readlink $sym);

eval '@foo = ()' if de�ned(@foo);

die "No XYZ package de�ned" unless de�ned % XYZ;

sub foo f de�ned &$bar ? &$bar(@) : die "No bar"; g

See also undef.

delete $ASSOCfKEYg

Deletes the speci�ed value from the speci�ed associative array. Returns the deleted

value, or the unde�ned value if nothing was deleted. Deleting from $ENVfg modi�es the

environment. Deleting from an array bound to a dbm �le deletes the entry from the

dbm �le.

The following deletes all the values of an associative array:

foreach $key (keys %ARRAY) f

delete $ARRAYf$keyg;

g

(But it would be faster to use the reset command. Saying undef %ARRAY is faster yet.)

die(LIST)

die LIST

Outside of an eval, prints the value of LIST to STDERR and exits with the current value

of $! (errno). If $! is 0, exits with the value of ($? >> 8) (�command� status). If ($?

>> 8) is 0, exits with 255. Inside an eval, the error message is stu�ed into $@ and the

eval is terminated with the unde�ned value.

Equivalent examples:

die "Can't cd to spool: $!nn" unless chdir �/usr/spool/news�;

chdir �/usr/spool/news� jj die "Can't cd to spool: $!nn"

If the value of EXPR does not end in a newline, the current script line number and input

line number (if any) are also printed, and a newline is supplied. Hint: sometimes

appending `̀ , stopped'' to your message will cause it to make better sense when the string

`̀ at foo line 123'' is appended. Suppose you are running script `̀ canasta''.

die "/etc/games is no good";

die "/etc/games is no good, stopped";

produce, respectively

/etc/games is no good at canasta line 123.

/etc/games is no good, stopped at canasta line 123.

See also exit .

do BLOCK

Returns the value of the last command in the sequence of commands indicated by

BLOCK. When modi�ed by a loop modi�er, executes the BLOCK once before testing

the loop condition. (On other statements the loop modi�ers test the conditional �rst.)

Release 4.0 Patchlevel 36 23

PERL(1) PERL(1)

cos(EXPR)

cos EXPR

Returns the cosine of EXPR (expressed in radians). If EXPR is omitted takes cosine of

$.

crypt(PLAINTEXT,SALT)

Encrypts a string exactly like the crypt() function in the C library. Useful for checking

the password �le for lousy passwords. Only the guys wearing white hats should do this.

dbmclose(ASSOC ARRAY)

dbmclose ASSOC ARRAY

Breaks the binding between a dbm �le and an associative array. The values remaining in

the associative array are meaningless unless you happen to want to know what was in

the cache for the dbm �le. This function is only useful if you have ndbm.

dbmopen(ASSOC,DBNAME,MODE)

This binds a dbm or ndbm �le to an associative array. ASSOC is the name of the asso-

ciative array. (Unlike normal open, the �rst argument is NOT a �lehandle, even though

it looks like one). DBNAME is the name of the database (without the .dir or .pag exten-

sion). If the database does not exist, it is created with protection speci�ed by MODE

(as modi�ed by the umask). If your system only supports the older dbm functions, you

may perform only one dbmopen in your program. If your system has neither dbm nor

ndbm, calling dbmopen produces a fatal error.

Values assigned to the associative array prior to the dbmopen are lost. A certain number

of values from the dbm �le are cached in memory. By default this number is 64, but you

can increase it by preallocating that number of garbage entries in the associative array

before the dbmopen. You can ush the cache if necessary with the reset command.

If you don't have write access to the dbm �le, you can only read associative array vari-

ables, not set them. If you want to test whether you can write, either use �le tests or try

setting a dummy array entry inside an eval, which will trap the error.

Note that functions such as keys() and values() may return huge array values when used

on large dbm �les. You may prefer to use the each() function to iterate over large dbm

�les. Example:

print out history �le o�sets

dbmopen(HIST,'/usr/lib/news/history',0666);

while (($key,$val) = each %HIST) f

print $key, ' = ', unpack('L',$val), "nn";

g

dbmclose(HIST);

de�ned(EXPR)

de�ned EXPR

Returns a boolean value saying whether the lvalue EXPR has a real value or not. Many

operations return the unde�ned value under exceptional conditions, such as end of �le,

uninitialized variable, system error and such. This function allows you to distinguish

between an unde�ned null string and a de�ned null string with operations that might

return a real null string, in particular referencing elements of an array. You may also

check to see if arrays or subroutines exist. Use on prede�ned variables is not guaranteed

to produce intuitive results. Examples:

Release 4.0 Patchlevel 36 22

PERL(1) PERL(1)

Here's an example that looks up non-numeric uids in the passwd �le:

print "User: ";

$user = <STDIN>;

chop($user);

print "Files: "

$pattern = <STDIN>;

chop($pattern);

open(pass, �/etc/passwd�) jj die "Can't open passwd: $!nn";

while (<pass>) f

($login,$pass,$uid,$gid) = split(/:/);

$uidf$loging = $uid;

$gidf$loging = $gid;

g

@ary = <$fpatterng>; # get �lenames

if ($uidf$userg eq ��) f

die "$user not in passwd �le";

g

else f

chown $uidf$userg, $gidf$userg, @ary;

g

chroot(FILENAME)

chroot FILENAME

Does the same as the system call of that name. If you don't know what it does, don't

worry about it. If FILENAME is omitted, does chroot to $.

close(FILEHANDLE)

close FILEHANDLE

Closes the �le or pipe associated with the �le handle. You don't have to close FILE-

HANDLE if you are immediately going to do another open on it, since open will close it

for you. (See open.) However, an explicit close on an input �le resets the line counter

($.), while the implicit close done by open does not. Also, closing a pipe will wait for the

process executing on the pipe to complete, in case you want to look at the output of the

pipe afterwards. Closing a pipe explicitly also puts the status value of the command into

$?. Example:

open(OUTPUT, �jsort >foo�); # pipe to sort

. . . # print stu� to output

close OUTPUT; # wait for sort to �nish

open(INPUT, �foo�); # get sort's results

FILEHANDLE may be an expression whose value gives the real �lehandle name.

closedir(DIRHANDLE)

closedir DIRHANDLE

Closes a directory opened by opendir().

connect(SOCKET,NAME)

Does the same thing that the connect system call does. Returns true if it succeeded,

false otherwise. NAME should be a package address of the proper type for the socket.

See example in section on Interprocess Communication.

Release 4.0 Patchlevel 36 21

PERL(1) PERL(1)

caller Returns the context of the current subroutine call:

($package,$�lename,$line) = caller;

With EXPR, returns some extra information that the debugger uses to print a stack

trace. The value of EXPR indicates how many call frames to go back before the current

one.

chdir(EXPR)

chdir EXPR

Changes the working directory to EXPR, if possible. If EXPR is omitted, changes to

home directory. Returns 1 upon success, 0 otherwise. See example under die.

chmod(LIST)

chmod LIST

Changes the permissions of a list of �les. The �rst element of the list must be the

numerical mode. Returns the number of �les successfully changed.

$cnt = chmod 0755, �foo�, �bar�;

chmod 0755, @executables;

chop(LIST)

chop(VARIABLE)

chop VARIABLE

chop Chops o� the last character of a string and returns the character chopped. It's used pri-

marily to remove the newline from the end of an input record, but is much more e�cient

than s/nn// because it neither scans nor copies the string. If VARIABLE is omitted,

chops $. Example:

while (<>) f

chop; # avoid nn on last �eld

@array = split(/:/);

. . .

g

You can actually chop anything that's an lvalue, including an assignment:

chop($cwd = �pwd�);

chop($answer = <STDIN>);

If you chop a list, each element is chopped. Only the value of the last chop is returned.

chown(LIST)

chown LIST

Changes the owner (and group) of a list of �les. The �rst two elements of the list must

be the NUMERICAL uid and gid, in that order. Returns the number of �les successfully

changed.

$cnt = chown $uid, $gid, �foo�, �bar�;

chown $uid, $gid, @�lenames;

Release 4.0 Patchlevel 36 20

PERL(1) PERL(1)

you can either use it as a unary operator or as a function call. To use it as a function call, the

next token on the same line must be a left parenthesis. (There may be intervening white space.)

Such a function then has highest precedence, as you would expect from a function. If any token

other than a left parenthesis follows, then it is a unary operator, with a precedence depending

only on whether it is a LIST operator or not. LIST operators have lowest precedence. All other

unary operators have a precedence greater than relational operators but less than arithmetic oper-

ators. See the section on Precedence.

For operators that can be used in either a scalar or array context, failure is generally indicated in

a scalar context by returning the unde�ned value, and in an array context by returning the null

list. Remember though that THERE IS NO GENERAL RULE FOR CONVERTING A LIST

INTO A SCALAR. Each operator decides which sort of scalar it would be most appropriate to

return. Some operators return the length of the list that would have been returned in an array

context. Some operators return the �rst value in the list. Some operators return the last value in

the list. Some operators return a count of successful operations. In general, they do what you

want, unless you want consistency.

/PATTERN/

See m/PATTERN/.

?PATTERN?

This is just like the /pattern/ search, except that it matches only once between calls to

the reset operator. This is a useful optimization when you only want to see the �rst

occurrence of something in each �le of a set of �les, for instance. Only ?? patterns local

to the current package are reset.

accept(NEWSOCKET,GENERICSOCKET)

Does the same thing that the accept system call does. Returns true if it succeeded, false

otherwise. See example in section on Interprocess Communication.

alarm(SECONDS)

alarm SECONDS

Arranges to have a SIGALRM delivered to this process after the speci�ed number of sec-

onds (minus 1, actually) have elapsed. Thus, alarm(15) will cause a SIGALRM at some

point more than 14 seconds in the future. Only one timer may be counting at once.

Each call disables the previous timer, and an argument of 0 may be supplied to cancel

the previous timer without starting a new one. The returned value is the amount of time

remaining on the previous timer.

atan2(Y,X)

Returns the arctangent of Y/X in the range �� to �.

bind(SOCKET,NAME)

Does the same thing that the bind system call does. Returns true if it succeeded, false

otherwise. NAME should be a packed address of the proper type for the socket. See

example in section on Interprocess Communication.

binmode(FILEHANDLE)

binmode FILEHANDLE

Arranges for the �le to be read in `̀ binary'' mode in operating systems that distinguish

between binary and text �les. Files that are not read in binary mode have CR LF

sequences translated to LF on input and LF translated to CR LF on output. Binmode

has no e�ect under Unix. If FILEHANDLE is an expression, the value is taken as the

name of the �lehandle.

caller(EXPR)

Release 4.0 Patchlevel 36 19

PERL(1) PERL(1)

unary & Address-of operator.

unary * Dereference-address operator.

(TYPE) Type casting operator.

Like C, perl does a certain amount of expression evaluation at compile time, whenever it deter-

mines that all of the arguments to an operator are static and have no side e�ects. In particular,

string concatenation happens at compile time between literals that don't do variable substitution.

Backslash interpretation also happens at compile time. You can say

�Now is the time for all� . " n n" .

�good men to come to.�

and this all reduces to one string internally.

The autoincrement operator has a little extra built-in magic to it. If you increment a variable

that is numeric, or that has ever been used in a numeric context, you get a normal increment. If,

however, the variable has only been used in string contexts since it was set, and has a value that

is not null and matches the pattern /^[a�zA�Z]*[0�9]*$/, the increment is done as a string, pre-

serving each character within its range, with carry:

print ++($foo = �99�); # prints `100'

print ++($foo = �a0�); # prints `a1'

print ++($foo = �Az�); # prints `Ba'

print ++($foo = �zz�); # prints `aaa'

The autodecrement is not magical.

The range operator (in an array context) makes use of the magical autoincrement algorithm if the

minimum and maximum are strings. You can say

@alphabet = (�A� .. �Z�);

to get all the letters of the alphabet, or

$hexdigit = (0 .. 9, �a� .. �f�)[$num & 15];

to get a hexadecimal digit, or

@z2 = (�01� .. �31�); print @z2[$mday];

to get dates with leading zeros. (If the �nal value speci�ed is not in the sequence that the magi-

cal increment would produce, the sequence goes until the next value would be longer than the

�nal value speci�ed.)

The jj and && operators di�er from C's in that, rather than returning 0 or 1, they return the last

value evaluated. Thus, a portable way to �nd out the home directory might be:

$home = $ENVf'HOME'g jj $ENVf'LOGDIR'g jj

(getpwuid($<))[7] jj die "You're homeless!nn";

Along with the literals and variables mentioned earlier, the operations in the following section can

serve as terms in an expression. Some of these operations take a LIST as an argument. Such a

list can consist of any combination of scalar arguments or array values; the array values will be

included in the list as if each individual element were interpolated at that point in the list, form-

ing a longer single-dimensional array value. Elements of the LIST should be separated by com-

mas. If an operation is listed both with and without parentheses around its arguments, it means

Release 4.0 Patchlevel 36 18

PERL(1) PERL(1)

�c File is a character special �le.

�u File has setuid bit set.

�g File has setgid bit set.

�k File has sticky bit set.

�t Filehandle is opened to a tty.

�T File is a text �le.

�B File is a binary �le (opposite of �T).

�M Age of �le in days when script started.

�A Same for access time.

�C Same for inode change time.

The interpretation of the �le permission operators �r, �R, �w, �W, �x and �X is

based solely on the mode of the �le and the uids and gids of the user. There may be

other reasons you can't actually read, write or execute the �le. Also note that, for the

superuser, �r, �R, �w and �W always return 1, and �x and �X return 1 if any execute

bit is set in the mode. Scripts run by the superuser may thus need to do a stat() in

order to determine the actual mode of the �le, or temporarily set the uid to something

else.

Example:

while (<>) f

chop;

next unless �f $; # ignore specials

. . .

g

Note that �s/a/b/ does not do a negated substitution. Saying �exp($foo) still works as

expected, however|only single letters following a minus are interpreted as �le tests.

The �T and �B switches work as follows. The �rst block or so of the �le is examined

for odd characters such as strange control codes or metacharacters. If too many odd

characters (>10%) are found, it's a �B �le, otherwise it's a �T �le. Also, any �le con-

taining null in the �rst block is considered a binary �le. If �T or �B is used on a �le-

handle, the current stdio bu�er is examined rather than the �rst block. Both �T and

�B return TRUE on a null �le, or a �le at EOF when testing a �lehandle.

If any of the �le tests (or either stat operator) are given the special �lehandle consisting of a soli-

tary underline, then the stat structure of the previous �le test (or stat operator) is used, saving a

system call. (This doesn't work with �t, and you need to remember that lstat and -l will leave

values in the stat structure for the symbolic link, not the real �le.) Example:

print "Can do.nn" if -r $a jj -w jj -x ;

stat($�lename);

print "Readablenn" if -r ;

print "Writablenn" if -w ;

print "Executablenn" if -x ;

print "Setuidnn" if -u ;

print "Setgidnn" if -g ;

print "Stickynn" if -k ;

print "Textnn" if -T ;

print "Binarynn" if -B ;

Here is what C has that perl doesn't:

Release 4.0 Patchlevel 36 17

PERL(1) PERL(1)

In a scalar context, . . returns a boolean value. The operator is bistable, like a ip-op,

and emulates the line-range (comma) operator of sed, awk, and various editors. Each . .

operator maintains its own boolean state. It is false as long as its left operand is false.

Once the left operand is true, the range operator stays true until the right operand is

true, AFTER which the range operator becomes false again. (It doesn't become false till

the next time the range operator is evaluated. It can test the right operand and become

false on the same evaluation it became true (as in awk), but it still returns true once. If

you don't want it to test the right operand till the next evaluation (as in sed), use three

dots (. . .) instead of two.) The right operand is not evaluated while the operator is in

the `̀ false'' state, and the left operand is not evaluated while the operator is in the `̀ true''

state. The precedence is a little lower than jj and &&. The value returned is either the

null string for false, or a sequence number (beginning with 1) for true. The sequence

number is reset for each range encountered. The �nal sequence number in a range has

the string �E0� appended to it, which doesn't a�ect its numeric value, but gives you

something to search for if you want to exclude the endpoint. You can exclude the begin-

ning point by waiting for the sequence number to be greater than 1. If either operand of

scalar . . is static, that operand is implicitly compared to the $. variable, the current line

number. Examples:

As a scalar operator:

if (101 . . 200) f print; g # print 2nd hundred lines

next line if (1 . . /^$/); # skip header lines

s/^/> / if (/^$/ . . eof()); # quote body

As an array operator:

for (101 . . 200) f print; g # print $ 100 times

@foo = @foo[$[. . $#foo]; # an expensive no-op

@foo = @foo[$#foo-4 . . $#foo]; # slice last 5 items

�x A �le test. This unary operator takes one argument, either a �lename or a �lehandle,

and tests the associated �le to see if something is true about it. If the argument is omit-

ted, tests $, except for �t, which tests STDIN . It returns 1 for true and �� for false, or

the unde�ned value if the �le doesn't exist. Precedence is higher than logical and rela-

tional operators, but lower than arithmetic operators. The operator may be any of:

�r File is readable by e�ective uid/gid.

�w File is writable by e�ective uid/gid.

�x File is executable by e�ective uid/gid.

�o File is owned by e�ective uid.

�R File is readable by real uid/gid.

�W File is writable by real uid/gid.

�X File is executable by real uid/gid.

�O File is owned by real uid.

�e File exists.

�z File has zero size.

�s File has non-zero size (returns size).

�f File is a plain �le.

�d File is a directory.

�l File is a symbolic link.

�p File is a named pipe (FIFO).

�S File is a socket.

�b File is a block special �le.

Release 4.0 Patchlevel 36 16

PERL(1) PERL(1)

Expressions

Since perl expressions work almost exactly like C expressions, only the di�erences will be men-

tioned here.

Here's what perl has that C doesn't:

** The exponentiation operator.

**= The exponentiation assignment operator.

() The null list, used to initialize an array to null.

. Concatenation of two strings.

.= The concatenation assignment operator.

eq String equality (== is numeric equality). For a mnemonic just think of `̀ eq'' as a string.

(If you are used to the awk behavior of using == for either string or numeric equality

based on the current form of the comparands, beware! You must be explicit here.)

ne String inequality (!= is numeric inequality).

lt String less than.

gt String greater than.

le String less than or equal.

ge String greater than or equal.

cmp String comparison, returning -1, 0, or 1.

<=> Numeric comparison, returning -1, 0, or 1.

=~ Certain operations search or modify the string `̀ $ '' by default. This operator makes

that kind of operation work on some other string. The right argument is a search pat-

tern, substitution, or translation. The left argument is what is supposed to be searched,

substituted, or translated instead of the default `̀ $ ''. The return value indicates the

success of the operation. (If the right argument is an expression other than a search pat-

tern, substitution, or translation, it is interpreted as a search pattern at run time. This

is less e�cient than an explicit search, since the pattern must be compiled every time the

expression is evaluated.) The precedence of this operator is lower than unary minus and

autoincrement/decrement, but higher than everything else.

!~ Just like =~ except the return value is negated.

x The repetition operator. Returns a string consisting of the left operand repeated the

number of times speci�ed by the right operand. In an array context, if the left operand

is a list in parens, it repeats the list.

print ��� x 80; # print row of dashes

print ��� x80; # illegal, x80 is identi�er

print "nt" x ($tab/8), � � x ($tab%8); # tab over

@ones = (1) x 80; # an array of 80 1's

@ones = (5) x @ones; # set all elements to 5

x= The repetition assignment operator. Only works on scalars.

. . The range operator, which is really two di�erent operators depending on the context. In

an array context, returns an array of values counting (by ones) from the left value to the

right value. This is useful for writing `̀ for (1..10)'' loops and for doing slice operations on

arrays.

Release 4.0 Patchlevel 36 15

PERL(1) PERL(1)

foo: f

/^abc/ && ($abc = 1, last foo);

/^def/ && ($def = 1, last foo);

/^xyz/ && ($xyz = 1, last foo);

$nothing = 1;

g

or even

if (/^abc/)

f $abc = 1; g

elsif (/^def/)

f $def = 1; g

elsif (/^xyz/)

f $xyz = 1; g

else

f$nothing = 1;g

As it happens, these are all optimized internally to a switch structure, so perl jumps directly to

the desired statement, and you needn't worry about perl executing a lot of unnecessary statements

when you have a string of 50 elsifs, as long as you are testing the same simple scalar variable

using ==, eq, or pattern matching as above. (If you're curious as to whether the optimizer has

done this for a particular case statement, you can use the �D1024 switch to list the syntax tree

before execution.)

Simple statements

The only kind of simple statement is an expression evaluated for its side e�ects. Every simple

statement must be terminated with a semicolon, unless it is the �nal statement in a block, in

which case the semicolon is optional. (Semicolon is still encouraged there if the block takes up

more than one line).

Any simple statement may optionally be followed by a single modi�er, just before the terminating

semicolon. The possible modi�ers are:

if EXPR

unless EXPR

while EXPR

until EXPR

The if and unless modi�ers have the expected semantics. The while and until modi�ers also have

the expected semantics (conditional evaluated �rst), except when applied to a do-BLOCK or a do-

SUBROUTINE command, in which case the block executes once before the conditional is evalu-

ated. This is so that you can write loops like:

do f

$ = <STDIN>;

. . .

g until $ eq ".n n";

(See the do operator below. Note also that the loop control commands described later will NOT

work in this construct, since modi�ers don't take loop labels. Sorry.)

Release 4.0 Patchlevel 36 14

PERL(1) PERL(1)

ARRAY is an actual array (as opposed to an expression returning an array value), you can modify

each element of the array by modifying VAR inside the loop. Examples:

for (@ary) f s/foo/bar/; g

foreach $elem (@elements) f

$elem *= 2;

g

for ((10,9,8,7,6,5,4,3,2,1,�BOOM�)) f

print $, "nn"; sleep(1);

g

for (1..15) f print "Merry Christmasnn"; g

foreach $item (split(/:[nnnn:]*/, $ENVf�TERMCAP�g)) f

print "Item: $itemnn";

g

The BLOCK by itself (labeled or not) is equivalent to a loop that executes once. Thus you can

use any of the loop control statements in it to leave or restart the block. The continue block is

optional. This construct is particularly nice for doing case structures.

foo: f

if (/^abc/) f $abc = 1; last foo; g

if (/^def/) f $def = 1; last foo; g

if (/^xyz/) f $xyz = 1; last foo; g

$nothing = 1;

g

There is no o�cial switch statement in perl, because there are already several ways to write the

equivalent. In addition to the above, you could write

foo: f

$abc = 1, last foo if /^abc/;

$def = 1, last foo if /^def/;

$xyz = 1, last foo if /^xyz/;

$nothing = 1;

g

or

foo: f

/^abc/ && do f $abc = 1; last foo; g;

/^def/ && do f $def = 1; last foo; g;

/^xyz/ && do f $xyz = 1; last foo; g;

$nothing = 1;

g

or

Release 4.0 Patchlevel 36 13

PERL(1) PERL(1)

if (EXPR) BLOCK

if (EXPR) BLOCK else BLOCK

if (EXPR) BLOCK elsif (EXPR) BLOCK . . . else BLOCK

LABEL while (EXPR) BLOCK

LABEL while (EXPR) BLOCK continue BLOCK

LABEL for (EXPR; EXPR; EXPR) BLOCK

LABEL foreach VAR (ARRAY) BLOCK

LABEL BLOCK continue BLOCK

Note that, unlike C and Pascal, these are de�ned in terms of BLOCKs, not statements. This

means that the curly brackets are required|no dangling statements allowed. If you want to write

conditionals without curly brackets there are several other ways to do it. The following all do the

same thing:

if (!open(foo)) f die "Can't open $foo: $!"; g

die "Can't open $foo: $!" unless open(foo);

open(foo) jj die "Can't open $foo: $!"; # foo or bust!

open(foo) ? �hi mom� : die "Can't open $foo: $!";

a bit exotic, that last one

The if statement is straightforward. Since BLOCKs are always bounded by curly brackets, there

is never any ambiguity about which if an else goes with. If you use unless in place of if , the sense

of the test is reversed.

The while statement executes the block as long as the expression is true (does not evaluate to the

null string or 0). The LABEL is optional, and if present, consists of an identi�er followed by a

colon. The LABEL identi�es the loop for the loop control statements next , last , and redo (see

below). If there is a continue BLOCK, it is always executed just before the conditional is about

to be evaluated again, similarly to the third part of a for loop in C. Thus it can be used to incre-

ment a loop variable, even when the loop has been continued via the next statement (similar to

the C `̀ continue'' statement).

If the word while is replaced by the word until , the sense of the test is reversed, but the condi-

tional is still tested before the �rst iteration.

In either the if or the while statement, you may replace `̀ (EXPR)'' with a BLOCK, and the condi-

tional is true if the value of the last command in that block is true.

The for loop works exactly like the corresponding while loop:

for ($i = 1; $i < 10; $i++) f

. . .

g

is the same as

$i = 1;

while ($i < 10) f

. . .

g continue f

$i++;

g

The foreach loop iterates over a normal array value and sets the variable VAR to be each element

of the array in turn. The variable is implicitly local to the loop, and regains its former value upon

exiting the loop. The `̀ foreach'' keyword is actually identical to the `̀ for'' keyword, so you can use

`̀ foreach'' for readability or `̀ for'' for brevity. If VAR is omitted, $ is set to each value. If

Release 4.0 Patchlevel 36 12

PERL(1) PERL(1)

The <> symbol will return FALSE only once. If you call it again after this it will assume you are

processing another @ARGV list, and if you haven't set @ARGV, will input from STDIN .

If the string inside the angle brackets is a reference to a scalar variable (e.g. <$foo>), then that

variable contains the name of the �lehandle to input from.

If the string inside angle brackets is not a �lehandle, it is interpreted as a �lename pattern to be

globbed, and either an array of �lenames or the next �lename in the list is returned, depending on

context. One level of $ interpretation is done �rst, but you can't say <$foo> because that's an

indirect �lehandle as explained in the previous paragraph. You could insert curly brackets to

force interpretation as a �lename glob: <$ffoog>. Example:

while (<*.c>) f

chmod 0644, $;

g

is equivalent to

open(foo, "echo *.c j tr �s � ntnrnf� �nn012nn012nn012nn012�j");

while (<foo>) f

chop;

chmod 0644, $;

g

In fact, it's currently implemented that way. (Which means it will not work on �lenames with

spaces in them unless you have /bin/csh on your machine.) Of course, the shortest way to do the

above is:

chmod 0644, <*.c>;

Syntax

A perl script consists of a sequence of declarations and commands. The only things that need to

be declared in perl are report formats and subroutines. See the sections below for more informa-

tion on those declarations. All uninitialized user-created objects are assumed to start with a null

or 0 value until they are de�ned by some explicit operation such as assignment. The sequence of

commands is executed just once, unlike in sed and awk scripts, where the sequence of commands is

executed for each input line. While this means that you must explicitly loop over the lines of your

input �le (or �les), it also means you have much more control over which �les and which lines you

look at. (Actually, I'm lying|it is possible to do an implicit loop with either the �n or �p

switch.)

A declaration can be put anywhere a command can, but has no e�ect on the execution of the pri-

mary sequence of commands|declarations all take e�ect at compile time. Typically all the decla-

rations are put at the beginning or the end of the script.

Perl is, for the most part, a free-form language. (The only exception to this is format declara-

tions, for fairly obvious reasons.) Comments are indicated by the # character, and extend to the

end of the line. If you attempt to use /* */ C comments, it will be interpreted either as division

or pattern matching, depending on the context. So don't do that.

Compound statements

In perl , a sequence of commands may be treated as one command by enclosing it in curly brack-

ets. We will call this a BLOCK.

The following compound commands may be used to control ow:

Release 4.0 Patchlevel 36 11

PERL(1) PERL(1)

while ($ = <STDIN>) f print; g

while (<STDIN>) f print; g

for (;<STDIN>;) f print; g

print while $ = <STDIN>;

print while <STDIN>;

The �lehandles STDIN , STDOUT and STDERR are prede�ned. (The �lehandles stdin, stdout

and stderr will also work except in packages, where they would be interpreted as local identi�ers

rather than global.) Additional �lehandles may be created with the open function.

If a <FILEHANDLE> is used in a context that is looking for an array, an array consisting of all

the input lines is returned, one line per array element. It's easy to make a LARGE data space

this way, so use with care.

The null �lehandle <> is special and can be used to emulate the behavior of sed and awk. Input

from <> comes either from standard input, or from each �le listed on the command line. Here's

how it works: the �rst time <> is evaluated, the ARGV array is checked, and if it is null,

$ARGV[0] is set to �-�, which when opened gives you standard input. The ARGV array is then

processed as a list of �lenames. The loop

while (<>) f

. . . # code for each line

g

is equivalent to the following Perl-like pseudo code:

unshift(@ARGV, ���) if $#ARGV < $[;

while ($ARGV = shift) f

open(ARGV, $ARGV);

while (<ARGV>) f

. . . # code for each line

g

g

except that it isn't as cumbersome to say, and will actually work. It really does shift array ARGV

and put the current �lename into variable ARGV. It also uses �lehandle ARGV internally|<>

is just a synonym for <ARGV>, which is magical. (The pseudo code above doesn't work because

it treats <ARGV> as non-magical.)

You can modify @ARGV before the �rst <> as long as the array ends up containing the list of

�lenames you really want. Line numbers ($.) continue as if the input was one big happy �le.

(But see example under eof for how to reset line numbers on each �le.)

If you want to set @ARGV to your own list of �les, go right ahead. If you want to pass switches

into your script, you can put a loop on the front like this:

while ($ = $ARGV[0], / ^�/) f

shift;

last if / ^��$ / ;

/ ^�D(.*)/ && ($debug = $1);

/ ^�v / && $verbose++;

. . . # other switches

g

while (<>) f

. . . # code for each line

g

Release 4.0 Patchlevel 36 10

PERL(1) PERL(1)

returned by the subroutine named SomeSub.

A list value may also be subscripted like a normal array. Examples:

$time = (stat($�le))[8]; # stat returns array value

$digit = ('a','b','c','d','e','f')[$digit-10];

return (pop(@foo),pop(@foo))[0];

Array lists may be assigned to if and only if each element of the list is an lvalue:

($a, $b, $c) = (1, 2, 3);

($mapf�red�g, $mapf�blue�g, $mapf�green�g) = (0x00f, 0x0f0, 0xf00);

The �nal element may be an array or an associative array:

($a, $b, @rest) = split;

local($a, $b, %rest) = @ ;

You can actually put an array anywhere in the list, but the �rst array in the list will soak up all

the values, and anything after it will get a null value. This may be useful in a local().

An associative array literal contains pairs of values to be interpreted as a key and a value:

same as map assignment above

%map = ('red',0x00f,'blue',0x0f0,'green',0xf00);

Array assignment in a scalar context returns the number of elements produced by the expression

on the right side of the assignment:

$x = (($foo,$bar) = (3,2,1)); # set $x to 3, not 2

There are several other pseudo-literals that you should know about. If a string is enclosed by

backticks (grave accents), it �rst undergoes variable substitution just like a double quoted string.

It is then interpreted as a command, and the output of that command is the value of the pseudo-

literal, like in a shell. In a scalar context, a single string consisting of all the output is returned.

In an array context, an array of values is returned, one for each line of output. (You can set $/ to

use a di�erent line terminator.) The command is executed each time the pseudo-literal is evalu-

ated. The status value of the command is returned in $? (see Prede�ned Names for the interpre-

tation of $?). Unlike in csh, no translation is done on the return data|newlines remain newlines.

Unlike in any of the shells, single quotes do not hide variable names in the command from inter-

pretation. To pass a $ through to the shell you need to hide it with a backslash.

Evaluating a �lehandle in angle brackets yields the next line from that �le (newline included, so

it's never false until EOF, at which time an unde�ned value is returned). Ordinarily you must

assign that value to a variable, but there is one situation where an automatic assignment happens.

If (and only if) the input symbol is the only thing inside the conditional of a while loop, the value

is automatically assigned to the variable `̀ $ ''. (This may seem like an odd thing to you, but

you'll use the construct in almost every perl script you write.) Anyway, the following lines are

equivalent to each other:

Release 4.0 Patchlevel 36 9

PERL(1) PERL(1)

print <<"EOF"; # same as above

The price is $Price.

EOF

print << x 10; # null identi�er is delimiter

Merry Christmas!

print <<`EOC`; # execute commands

echo hi there

echo lo there

EOC

print <<foo, <<bar; # you can stack them

I said foo.

foo

I said bar.

bar

Array literals are denoted by separating individual values by commas, and enclosing the list in

parentheses:

(LIST)

In a context not requiring an array value, the value of the array literal is the value of the �nal ele-

ment, as in the C comma operator. For example,

@foo = (�cc�, ��E�, $bar);

assigns the entire array value to array foo, but

$foo = (�cc�, ��E�, $bar);

assigns the value of variable bar to variable foo. Note that the value of an actual array in a scalar

context is the length of the array; the following assigns to $foo the value 3:

@foo = (�cc�, ��E�, $bar);

$foo = @foo; # $foo gets 3

You may have an optional comma before the closing parenthesis of an array literal, so that you

can say:

@foo = (

1,

2,

3,

);

When a LIST is evaluated, each element of the list is evaluated in an array context, and the

resulting array value is interpolated into LIST just as if each individual element were a member of

LIST. Thus arrays lose their identity in a LIST|the list

(@foo,@bar,&SomeSub)

contains all the elements of @foo followed by all the elements of @bar, followed by all the elements

Release 4.0 Patchlevel 36 8

PERL(1) PERL(1)

perl �nds another line containing the quote character, which may be much further on in the script.

Variable substitution inside strings is limited to scalar variables, normal array values, and array

slices. (In other words, identi�ers beginning with $ or @, followed by an optional bracketed

expression as a subscript.) The following code segment prints out `̀ The price is $100.''

$Price = �$100�; # not interpreted

print "The price is $Price.nn"; # interpreted

Note that you can put curly brackets around the identi�er to delimit it from following alphanu-

merics. Also note that a single quoted string must be separated from a preceding word by a

space, since single quote is a valid character in an identi�er (see Packages).

Two special literals are LINE and FILE , which represent the current line number and

�lename at that point in your program. They may only be used as separate tokens; they will not

be interpolated into strings. In addition, the token END may be used to indicate the logical

end of the script before the actual end of �le. Any following text is ignored, but may be read via

the DATA �lehandle. (The DATA �lehandle may read data only from the main script, but not

from any required �le or evaluated string.) The two control characters ^D and ^Z are synonyms

for END .

A word that doesn't have any other interpretation in the grammar will be treated as if it had sin-

gle quotes around it. For this purpose, a word consists only of alphanumeric characters and

underline, and must start with an alphabetic character. As with �lehandles and labels, a bare

word that consists entirely of lowercase letters risks conict with future reserved words, and if you

use the �w switch, Perl will warn you about any such words.

Array values are interpolated into double-quoted strings by joining all the elements of the array

with the delimiter speci�ed in the $" variable, space by default. (Since in versions of perl prior to

3.0 the @ character was not a metacharacter in double-quoted strings, the interpolation of @array,

$array[EXPR], @array[LIST], $arrayfEXPRg, or @arrayfLISTg only happens if array is refer-

enced elsewhere in the program or is prede�ned.) The following are equivalent:

$temp = join($",@ARGV);

system "echo $temp";

system "echo @ARGV";

Within search patterns (which also undergo double-quotish substitution) there is a bad ambiguity:

Is /$foo[bar]/ to be interpreted as /$ffoog[bar]/ (where [bar] is a character class for the regular

expression) or as /$ffoo[bar]g/ (where [bar] is the subscript to array @foo)? If @foo doesn't oth-

erwise exist, then it's obviously a character class. If @foo exists, perl takes a good guess about

[bar], and is almost always right. If it does guess wrong, or if you're just plain paranoid, you can

force the correct interpretation with curly brackets as above.

A line-oriented form of quoting is based on the shell here-is syntax. Following a << you specify a

string to terminate the quoted material, and all lines following the current line down to the termi-

nating string are the value of the item. The terminating string may be either an identi�er (a

word), or some quoted text. If quoted, the type of quotes you use determines the treatment of the

text, just as in regular quoting. An unquoted identi�er works like double quotes. There must be

no space between the << and the identi�er. (If you put a space it will be treated as a null identi-

�er, which is valid, and matches the �rst blank line|see Merry Christmas example below.) The

terminating string must appear by itself (unquoted and with no surrounding whitespace) on the

terminating line.

print <<EOF; # same as above

The price is $Price.

EOF

Release 4.0 Patchlevel 36 7

PERL(1) PERL(1)

always true:

scalar(@whatever) == $#whatever � $[+ 1;

If you evaluate an associative array in a scalar context, it returns a value which is true if and only

if the array contains any elements. (If there are any elements, the value returned is a string con-

sisting of the number of used buckets and the number of allocated buckets, separated by a slash.)

Multi-dimensional arrays are not directly supported, but see the discussion of the $; variable later

for a means of emulating multiple subscripts with an associative array. You could also write a

subroutine to turn multiple subscripts into a single subscript.

Every data type has its own namespace. You can, without fear of conict, use the same name for

a scalar variable, an array, an associative array, a �lehandle, a subroutine name, and/or a label.

Since variable and array references always start with `$', `@', or `%', the `̀ reserved'' words aren't

in fact reserved with respect to variable names. (They ARE reserved with respect to labels and

�lehandles, however, which don't have an initial special character. Hint: you could say

open(LOG,�log�le�) rather than open(log,�log�le�). Using uppercase �lehandles also improves

readability and protects you from conict with future reserved words.) Case IS

signi�cant| `̀ FOO'', `̀ Foo'' and `̀ foo'' are all di�erent names. Names which start with a letter

may also contain digits and underscores. Names which do not start with a letter are limited to

one character, e.g. `̀ $%'' or `̀ $$''. (Most of the one character names have a prede�ned signi�cance

to perl . More later.)

Numeric literals are speci�ed in any of the usual oating point or integer formats:

12345

12345.67

.23E-10

0x��# hex

0377 # octal

4 294 967 296

String literals are delimited by either single or double quotes. They work much like shell quotes:

double-quoted string literals are subject to backslash and variable substitution; single-quoted

strings are not (except for n� and nn). The usual backslash rules apply for making characters

such as newline, tab, etc., as well as some more exotic forms:

nt tab

nn newline

nr return

nf form feed

nb backspace

na alarm (bell)

ne escape

n033 octal char

nx1b hex char

nc[control char

nl lowercase next char

nu uppercase next char

nL lowercase till nE

nU uppercase till nE

nE end case modi�cation

You can also embed newlines directly in your strings, i.e. they can end on a di�erent line than

they begin. This is nice, but if you forget your trailing quote, the error will not be reported until

Release 4.0 Patchlevel 36 6

